在 DWave Quantum Annealer 上运行离散二次模型的图划分

量子退火器是一类可以帮助解决NP-hard和NP-complete问题的量子计算机。下面是一个对社交网络、推荐系统等具有实际意义的例子。

多智能体(MARL)强化学习与博弈论

一些博弈论困境,如著名的布雷斯悖论,对多智能体强化学习有着深刻的影响。

面向可解释AI的黑盒和白盒模型

使用模型属性、本地逻辑表示和全局逻辑表示从黑盒模型生成解释

评价对象检测模型的数字度量:F1分数以及它们如何帮助评估模型的表现

介绍使用精度和召回率评估目标检测模型可以为模型在不同置信度下的表现提供有价值的见解。

Social LSTM:一个预测未来路径轨迹的深度学习模型

本篇文章试图解释描述深度学习模型Social-LSTM的研究论文

GIRAFFE: CVPR 2021 最佳论文介绍和代码解释

GIRAFFE是一个基于学习的、完全可微的渲染引擎,用于将场景合成为多个“特征域”的总和

图神经网络常用方法的统一观点

图注意、图卷积、网络传播都是图神经网络中消息传递的特殊情况。

TODS:从时间序列数据中检测不同类型的异常值

自动构建用于时间序列异常值检测的机器学习管道。

基于ResNet和Transformer的场景文本识别

对于自然场景的文字识别我们会遇到了许多不规则裁剪的图像,其中包含文本表示。

2021 年 7 月推荐阅读的四篇深度学习论文

从大规模深度强化学习到对抗性鲁棒性、SimCLR-v2 和学习神经网络空间

使用反事实示例解释 XGBoost 模型的决策

模型可解释性——故障检测、识别和诊断

通过FEDOT将AutoML用于时间序列数据

一个在具有间隙和非平稳性的真实数据上使用FEDOT和其他AutoML库的示例

使用 HuggingFace Transformers创建自己的搜索引擎

NLP、Plotly和Dash创建红酒搜索引擎

目标检测模型SSD的详细解释

目标检测由两个独立的任务组成,即分类和定位。

快速掌握Seaborn分布图的10个例子

任何数据产品的第一步都应该是理解原始数据。数据分布的EDA至关重要

​从零开始训练BERT模型

在本文中,我们将探讨构建我们自己的 Transformer 模型必须采取的步骤——特别是 BERT 的进一步开发版本,称为 RoBERTa。

从一个不同角度看精准度与召回

在本文中,我们将以不同的方式解释这些术语

PCA不适用于时间序列分析的案例研究

以及如何对时间序列进行线性降维。

图卷积神经网络分析复杂碳水化合物

使用PyTorch处理生物数据

如何使用机器学习在一个非常小的数据集上做出预测

朴素贝叶斯是一系列简单的概率分类器,它们是最简单的贝叶斯模型之一,但通过核密度估计,它们可以达到更高的精度水平。