60行代码就可以训练/微调 Segment Anything 2 (SAM 2)

本文演示了如何在仅60行代码内(不包括标注和导入)对SAM2进行微调。

Skeleton Recall Loss 分割领域的新突破:极大的减少了资源消耗,还能提高性能

这篇论文则介绍了一个新的损失:Skeleton Recall Loss,我把它翻译成骨架召回损失.这个损失目前获得了最先进的整体性能,并且通过取代密集的计算**他的计算开销减少超过90% !**

CNN依旧能战:nnU-Net团队新研究揭示医学图像分割的验证误区,设定先进的验证标准与基线模型

这篇论文研究了在3D医学图像分割领近年引入了许多新的架构和方法,但大多数方法并没有超过2018年的原始nnU-Net基准。作者指出,许多关于新方法的优越性的声称在进行严格验证后并不成立,这揭示了当前在方法验证上存在的不严谨性。

【人工智能Ⅱ】实验4:Unet眼底血管图像分割

下采样可以增加对输入图像的一些小扰动的鲁棒性,比如图像平移,旋转等,减少过拟合的风险,降低运算量,增加感受野的大小。根据预测结果可以分析得到:在训练迭代次数较高的情况下,模型能够完全完成对眼球图像进行分割,所有眼球中的血管基本保持一个较高的能见度。根据预测结果可以分析得到:在训练迭代次数较低的情况下

用于3D MRI和CT扫描的深度学习模型总结

本文中将介绍6种神经网络架构,可以使用它们来训练3D医疗数据上的深度学习模型。

用于语义图像分割的弱监督和半监督学习:弱监督期望最大化方法

这篇论文只有图像级标签或边界框标签作为弱/半监督学习的输入。使用期望最大化(EM)方法,用于弱/半监督下的语义分割模型训练。

UNeXt:基于 MLP 的快速医学图像分割网络

UNeXt是约翰霍普金斯大学在2022年发布的论文。它在早期阶段使用卷积,在潜在空间阶段使用 MLP。通过一个标记化的 MLP 块来标记和投影卷积特征,并使用 MLP 对表示进行建模。对输入通道进行移位,可以专注于学习局部依赖性。

医学图像的深度学习的完整代码示例:使用Pytorch对MRI脑扫描的图像进行分割

本文我们将介绍如何使用QuickNAT对人脑的图像进行分割。使用MONAI, PyTorch和用于数据可视化和计算的常见Python库,如NumPy, TorchIO和matplotlib。

论文推荐:DCSAU-Net,更深更紧凑注意力U-Net

这是一篇23年发布的新论文,论文提出了一种更深、更紧凑的分裂注意力的U-Net,该网络基于主特征守恒和紧凑分裂注意力模块,有效地利用了底层和高层语义信息。

深度学习:使用UNet做图像语义分割,训练自己制作的数据集,详细教程

语义分割(Semantic Segmentation)是图像处理和机器视觉一个重要分支。与分类任务不同,语义分割需要判断图像每个像素点的类别,进行精确分割。语义分割目前在自动驾驶、自动抠图、医疗影像等领域有着比较广泛的应用。我总结了使用UNet网络做图像语义分割的方法,教程很详细,学者耐心学习。

Half-UNet:用于医学图像分割的简化U-Net架构

Half-UNet简化了编码器和解码器,还使用了Ghost模块(GhostNet)。并重新设计的体系结构,把通道数进行统一。

论文推荐:CCNet用于语义分割的交叉注意力

CCNet, Transformer递归交叉自注意力,比非局部神经网络更有效。华中科技大学、地平线、ReLER 和伊利诺伊大学香槟分校联合研发

BT - Unet:生物医学图像分割的自监督学习框架

BT-Unet采用Barlow twin方法对U-Net模型的编码器进行无监督的预训练减少冗余信息,以学习数据表示。之后,对完整网络进行微调以执行实际的分割。

论文推荐:基于深度对抗学习的超声图像乳腺肿瘤分割与分类

条件GAN (cGAN) + Atrous卷积(AC) +带权重块的通道注意力(CAW)

论文推荐:基于GE-MRI的多任务学习

医学图像分析,多任务学习,图像分类,图像分割,U-Net,后处理

细胞图像数据的主动学习

通过细胞图像的标签对模型性能的影响,为数据设置优先级和权重。

基于自动编码器的赛车视角转换与分割

本文将利用vae将汽车前置视像头的图像转换成分割后的鸟瞰图

Multimix:从医学图像中进行的少量监督,可解释的多任务学习

在这篇文章中,我们解释了一个可用于联合学习分类和分割任务的新的稀疏监督多任务学习模型MultiMix。该论文使用四种不同的胸部x射线数据集进行了广泛的实验,证明了MultiMix在域内和跨域评估中的有效性。

论文回顾:U2-Net,由U-Net组成的U-Net

在这篇文章中,我们将介绍2020年发布的一种称为 U²-Net 或 U-squared Net 的 U-net 变体。U²-Net基本上是由U-Net组成的U-Net。