使用机器学习生成图像描述
在本文中,我们将为各种图像生成文字描述图像描述是为图像提供适当文字描述的过程。在深度神经网络的最新发展之前,业内最聪明的人都无法解决这个问题
图数据的自监督学习介绍
深度学习在解决许多复杂的机器学习问题方面一直是一个有趣的课题,特别是最近在图数据方面。
非技术人员应该学习SQL的3个原因
作为一名数据分析师,我整天编写SQL查询。我的任务之一是充当公司数据库和需要随时使用数据的同事之间的翻译。
用于时间序列数据的泊松回归模型
泊松和类泊松回归模型常用于基于计数的数据集,即包含整数计数的数据。
深度学习的几何基础
几何深度学习是从对称性和不变性的角度对广泛的ML问题进行几何统一的尝试。
2021年进入AI和ML领域之前需要了解的10件事
自从2012年数据科学被评为21世纪最性感的工作以来,来自不同领域的许多人开始转向数据科学或相关的机器学习角色。
使用自编码器进行图像去噪
在这篇文章中,你将了解自编码器是如何工作的,以及为什么它们被用于医学图像去噪。
使用结构化表格数据对比深度学习和GBDT模型
在数据科学的世界里,深度学习方法无疑是最先进的研究。然而,深度学习模型真的比GBDT(梯度提升决策树)这样的“传统”机器学习模型更好吗
使用Tensorboard投影进行高维向量的可视化
TensorBoard是tensorflow的可视化工具包。 它帮助我们可视化各种机器学习实验。
ICLR 2021 - 不可错过的10篇论文
ICLR 2021,它包含了860篇论文,8个研讨会和8个受邀演讲。全部看完这些论文需要花费很长的时间,所以这里总结了10篇论文,希望对你有所帮助!
如何训练孪生神经网络
在本文中,我将讨论一种称为孪生神经网络的模型。希望在阅读之后,您将更好地理解这种体系结构不仅可以帮助保存数据,而且可以帮助数据量有限和类变化速度快的任何领域。
VarifocalNet (VF-Net)一种新型的目标检测网络
引入IoU感知和Varifocal 来提高对象检测SOTA分数
自动驾驶汽车的车道检测
这篇文章是关于自动驾驶汽车车道检测的深度学习解决方案
使用深度学习的模型对摄影彩色图像进行去噪
介绍大多数图像去噪器技术专注于去除AWGN(高斯白噪声)。但是随着深度学习的进步,重点已转向为现实世界中的嘈杂彩色图像设计降噪架构。
如何微调GPT-2生成高质量的歌词
自然语言生成(NLG)近年来取得了令人难以置信的进步。2019年初,OpenAI发布了GPT-2,一个巨大的预训练模型(1.5B参数),能够生成类人质量的文本。
机器学习项目中特征工程的5个最佳实践
当处理一个新的机器学习问题时,没有办法从一开始就知道解决方案是什么,除非各种不同的实验被尝试和测试。以下总结了5个步骤希望对你有帮助。
半监督学习与PyTorch和SESEMI
半监督和自监督技术的世界是一个特别迷人的领域,因为它看起来几乎像魔术?事实上,这些技术比你想象的更容易理解
5个Python库可以帮你轻松的进行自然语言预处理
自然语言是指人类相互交流的语言,而自然语言处理是将数据以可理解的形式进行预处理,使计算机能够理解的一种方法。
谷歌MLP-Mixer:用于图像处理的全MLP架构
图像处理是机器学习中最有趣的子区域之一。MLP-Mixer无需使用任何卷积或任何自我注意层,但几乎可以达到SOTA结果,这是非常令人深思的。
决策树和机器学习算法的贝叶斯解释
决策树的常用方法是该贝叶斯模型的近似值。 该模型还包含一个初级集成方法的思想。 这样一来,让我们投入一些数学知识,并探讨贝叶斯定理的相关性。