深度学习参数初始化(一)Xavier初始化 含代码

Xavier初始化也称为Glorot初始化,因为发明人为Xavier Glorot。Xavier initialization是 Glorot 等人为了解决随机初始化的问题提出来的另一种初始化方法,他们的思想就是尽可能的让输入和输出服从相同的分布,这样就能够避免后面层的激活函数的输出值趋向于0。..

最新版YOLOv6训练自己的数据集(超详细完整版!)

接着上篇文章继续写,本篇文章讲如何训练自己的数据集。从官网下载YOLOv6源码:meituan/YOLOv6: YOLOv6: a single-stage object detection framework dedicated to industrial applications. (githu

零样本和少样本学习

在本篇文章中,我们将讨论机器学习和深度学习的不同领域中的一个热门话题:零样本和少样本学习(Zero and Few Shot learning),它们在自然语言处理到计算机视觉中都有不同的应用场景。

YOLOv6算法新鲜出炉--训练自己数据集过程

YOLOv6算法背景:YOLOv6 是美团视觉智能部研发的一款目标检测框架,致力于工业应用。本框架同时专注于检测的精度和推理效率,在工业界常用的尺寸模型中:YOLOv6-nano 在 COCO 上精度可达 35.0% AP,在 T4 上推理速度可达 1242 FPS;YOLOv6-s 在 COCO

CS231n-2022 Module1: 神经网络要点概述(2)

本文编译自斯坦福大学的CS231n课程(2022) Module1课程中神经网络部分的内容: 【1】Neural Networks Part 2: Setting up the Data and the Loss To be added.

Yolov5网络修改教程(将backbone修改为EfficientNet、MobileNet3、RegNet等)

在我的本科毕业论文中,我使用了Yolov5,并尝试对其更改。可以对Yolov5进行一定程度的定制化修改,例如更轻量级的Yolov5-MobileNetv3 或者比Yolov5s更好的(存疑,没有跑过大数据集,可自己实验)Yolov5-EfficientNet。......

机器学习西瓜书——第六章 支持向量机

从几何角度,对线性可分数据集,支持向量机就是找距离正负样本都最远的超平面,相比于感知机,其解是唯一的,且不偏不倚,泛化性能更好。给定训练样本集,分类学习最基本的想法就是基于训练集D在样本空间中找到一个划分超平面,将不同类别的样本分开,支持向量机倾向找到产生分类结果具有鲁棒性,对未见示例的泛化能力最强

深度学习---三好学生各成绩所占权重问题(2)

深度学习---三好学生各成绩所占权重问题,训练神经网络

一招实时追回逝去的对象——基于当前统计模型(CS模型)的跟踪算法matlab实现

当前统计模型,CS模型基于当前统计模型的无迹卡尔曼滤波目标基于当前统计模型的容积卡尔曼滤波目标机动目标跟踪——当前统计模型(CS模型)1. 对机动目标跟踪的理解1.1. 对机动目标跟踪的理解1.2. 目标模型概述2. "当前"统计CS模型3. "当前"统计CS模型3.1. "当前"统计CS模型(连续

一个简单但是能上分的特征标准化方法

一般情况下我们在做数据预处理时都是使用StandardScaler来特征的标准化,如果你的数据中包含异常值,那么效果可能不好。

手写数字识别-基于卷积神经网络

机器识图的过程:机器识别图像并不是一下子将一个复杂的图片完整识别出来,而是将一个完整的图片分割成许多个小部分,把每个小部分里具有的特征提取出来(也就是识别每个小部分),再将这些小部分具有的特征汇总到一起,就可以完成机器识别图像的过程了。...

Python编程学习:random.shuffle的简介、使用方法之详细攻略

Python编程学习:random.shuffle的简介、使用方法之详细攻略目录random.shuffle的简介random.shuffle的使用方法1、使两个列表打乱遵循同一个规则 random.shuffle方法,对元素进行重新排序,打乱原有的顺序,返回一个随机序列(当然此处随机序

爆火的Transformer,到底火在哪?

与传统的 Soft Attention相比, Self-Attention 可有效缩短远距离依赖特征之间的距离,更容易捕获时间序列数据中相互依赖的特征,在大多数实际问题中,Self-Attention 更被研究者们所青睐,并具有更加优异的实际表现。完全不依赖于RNN结构仅利用Attention机制的

Pytorch(二) —— 激活函数、损失函数及其梯度

δ(x)=11+e−xδ′(x)=δ(1−δ)\delta(x)=\frac{1}{1+e^{-x}}\\\delta'(x)=\delta(1-\delta)δ(x)=1+e−x1​δ′(x)=δ(1−δ)tanh(x)=ex−e−xex+e−x∂tanh(x)∂x=1−tanh2(x)tanh(

【深度学习】(2) Transformer 网络解析,代码复现,附Pytorch完整代码

今天和各位分享一下如何使用 Pytorch 构建 Transformer 模型。本文的重点在代码复现,部分知识点介绍的不多,我会在之后的四篇博文中详细介绍 Encoder,Decoder,(Mask)MutiHeadAttention,以及实战案例。之前我也介绍过 Vision Tranformer

在3Dslicer中使用opencv连接相机

在3Dslicer中使用opencv连接相机

时间序列预测系列文章总结(代码使用方法)

时间序列预测系列文章总结(代码使用方法)

基于趋势和季节性的时间序列预测

分析时间序列的趋势和季节性,分解时间序列,实现预测模型

AI: 2021 年人工智能前沿科技报告(更新中……)

AI: 2021 年人工智能前沿科技报告(更新中……)1. 信息模型、具身模型和脑模拟机器人的结合将诞生超级人工智能。2. 系统研究超大规模智能模型发展和影响的新兴领域已经形成,超大规模预训练模型研发竞赛进入白热化阶段,多模态预训练模型成为下一个大模型重点发展领域。3. Transformer 成为

人工智能(大数据)

大数据