机器学习西瓜书——第七章 贝叶斯分类器

贝叶斯决策论是在概率框架下实施决策的基本方法。对分类任务来说,在所有相关概率都已知的理想情形下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记。下面我们以多分类任务为例来解释其基本原理。假设有NNN种可能的类别标记,即Y={c1,c2,…,cN},λij\mathcal{Y}=\le

通过哈密顿蒙特卡罗(HMC)拟合深度高斯过程,量化信号中的不确定性

本文将介绍如何使用深度高斯过程建模量化信号中的不确定性

论文写作指导笔记—— 管理科学研究选题

目录一些概念1.什么是理论?2.论文中创新的新在哪?3.科学和社会科学是什么?4.机理和机制?关于论文选题2、选题标准:3、选题策略:4、选题类型5、研究范式6、其他理论是能解释现象的言论的集合Re-search:一遍又一遍的找,是接受知识到创造知识,从知识“汇”到知识“源”的过程知识和创新:知识是

Python实现基于图神经网络的异构图表示学习和推荐算法研究

安装依赖Python 3.7CPU异构图表示学习(附录)基于对比学习的关系感知异构图神经网络(Relation-aware Heterogeneous Graph Neural Network with Contrastive Learning, RHCO)见 readme基于图神经网络的学术推荐算

【0基础运筹学】【超详细】列生成(Column Generation)

之前一直想跟大家分享一下`列生成(Column generation)`,也全网搜了许多文档、视频、论文等。大部分教程抽象程度较高,需要具备大量的基础知识才能看明白,于是写一篇尽可能0基础上手的分享,希望能帮到也在从事相关行业的你。...

一口气刷完牛客网全部机器学习算法题

不知道为什么最近突然觉得牛客网很火,好奇心驱使下我也点开看了看...发现真的不错。

人工智能:卷积神经网络及YOLO算法 入门详解与综述(二)

卷积神经网络的基本结构由输入层、卷积层、池化层(也称为取样层)、全连接层及输出层构成。卷积层和池化层一般会取若干个,采用卷积层和池化层交替设置,即一个卷积层连接一个池化层,池化层后再连接一个卷积层,依此类推。由于卷积层中输出特征面的每个神经元与其输入进行局部连接,并通过对应的连接权值与局部输入进行加

RepVGG网络简介

VGG网络是2014年由牛津大学著名研究组VGG (Visual Geometry Group) 提出的。在2014到2016年(ResNet提出之前),VGG网络可以说是当时最火并被广泛应用的Backbone。后面由于各种新的网络提出,论精度VGG比不上ResNet,论速度和参数数量VGG比不过M

5分钟NLP-知识问答(KBQA)两种主流方法:基于语义解析和基于信息检索的方法介绍

基于知识的问答是以知识库为认知源,在知识库的基础上回答自然语言问题。在本文中讲介绍知识问答两种主要方法。

Faster RCNN学习笔记

对Faster RCNN的学习进行一些记录,方便后面的复习,有错误欢迎指出

YOLOv7来临:论文解读附代码解析

官方版的YOLOv7相同体量下比YOLOv5精度更高,速度快120%(FPS),比 YOLOX 快180%(FPS),比 Dual-Swin-T 快1200%(FPS),比 ConvNext 快550%(FPS),比 SWIN-L快500%(FPS)。在5FPS到160FPS的范围内,无论是速度或是

强化学习入门笔记

我们先回忆一下童年,来看看超级玛丽这款游戏在这款游戏里面的,我们需要控制超级玛丽进行左右行走、跳、攻击等动作,来躲避或攻击小动物、吃金币以及各种类型的增益道具。最终,获得的金币数量的多少以及通关代表我们玩游戏玩的好不好。那么,如果我们希望让机器来玩这个游戏呢?怎么能让机器在合适的时候做出合适的动作?

数学建模学习(73):用Python敏感性分析,如此轻松简单

数学建模中的敏感性分析详细实现,从建模到敏感性分析。

Pytorch入门实战(6):基于GAN生成简单的动漫人物头像

Pytorch入门实战(6):基于GAN生成简单的动漫人物头像

【OpenCV】车辆识别 C++ OpenCV 原理介绍 + 案例实现

本文主要以车辆识别为目标,利用 C++语言 结合 Qt + OpenCV 进行图像处理相关步骤的讲解

基于双语数据集搭建seq2seq模型

基于英-法数据集搭建无注意力机制的seq2seq模型

使用 CLIP 对没有标记的图像进行零样本无监督分类

OpenAI 提出的CLIP模型,不需要标签并且在 ImageNet 上实现 76.2% 的测试准确率,在这篇文章中将概述 CLIP 的信息,如何使用它来最大程度地减少对传统的监督数据的依赖,以及它对深度学习从业者的影响。

基于GAN的时序缺失数据填补前言(1)——RNN介绍及pytorch代码实现

本专栏将主要介绍基于GAN的时序缺失数据填补。提起时序数据,就离不开一个神经网络——循环神经网络(Recurrent Neural Network, RNN)。RNN是一类用于处理序列数据的神经网络。RNN对具有序列特性的数据非常有效,它能挖掘数据中的时序信息。因为在介绍时序缺失数据填补,就离不开R

利用有放回抽样估计自然常数e python

利用有放回抽样中一个数字没有被抽到的概率估计自然常数e python 使用字典dict 集合set numpy三种实现方式

【深度学习】(一)机器学习基础学习笔记

作为一个图像算法工程师,传统图像算法和深度学习算法都应该掌握,这样在面对不同的实际场景时可以有更多得解决方法。之前的文章基本上都是以传统方法为主,所以今天一起来学习一下有关深度学习的算法。以后也会持续更新深度学习相关的内容。AI人工智能包含的内容十分广泛,对于图像处理而言,机器学习、深度学习或者计算