0


Pytorch(二) —— 激活函数、损失函数及其梯度

Pytorch(二) —— 激活函数、损失函数及其梯度

1.激活函数

1.1 Sigmoid / Logistic

     δ
    
    
     (
    
    
     x
    
    
     )
    
    
     =
    
    
     
      1
     
     
      
       1
      
      
       +
      
      
       
        e
       
       
        
         −
        
        
         x
        
       
      
     
    
    
    
     
      δ
     
     
      ′
     
    
    
     (
    
    
     x
    
    
     )
    
    
     =
    
    
     δ
    
    
     (
    
    
     1
    
    
     −
    
    
     δ
    
    
     )
    
   
   
    \delta(x)=\frac{1}{1+e^{-x}}\\\delta'(x)=\delta(1-\delta)
   
  
 δ(x)=1+e−x1​δ′(x)=δ(1−δ)
import matplotlib.pyplot as plt
import torch.nn.functional asF
x = torch.linspace(-10,10,1000)
y =F.sigmoid(x)
plt.plot(x,y)
plt.show()

在这里插入图片描述

1.2 Tanh

     t
    
    
     a
    
    
     n
    
    
     h
    
    
     (
    
    
     x
    
    
     )
    
    
     =
    
    
     
      
       
        e
       
       
        x
       
      
      
       −
      
      
       
        e
       
       
        
         −
        
        
         x
        
       
      
     
     
      
       
        e
       
       
        x
       
      
      
       +
      
      
       
        e
       
       
        
         −
        
        
         x
        
       
      
     
    
    
    
     
      
       ∂
      
      
       t
      
      
       a
      
      
       n
      
      
       h
      
      
       (
      
      
       x
      
      
       )
      
     
     
      
       ∂
      
      
       x
      
     
    
    
     =
    
    
     1
    
    
     −
    
    
     t
    
    
     a
    
    
     n
    
    
     
      h
     
     
      2
     
    
    
     (
    
    
     x
    
    
     )
    
   
   
    tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}\\\frac{\partial tanh(x)}{\partial x}=1-tanh^2(x)
   
  
 tanh(x)=ex+e−xex−e−x​∂x∂tanh(x)​=1−tanh2(x)
import matplotlib.pyplot as plt
import torch.nn.functional asF
x = torch.linspace(-10,10,1000)
y =F.tanh(x)
plt.plot(x,y)
plt.show()

在这里插入图片描述

1.3 ReLU

     f
    
    
     (
    
    
     x
    
    
     )
    
    
     =
    
    
     m
    
    
     a
    
    
     x
    
    
     (
    
    
     0
    
    
     ,
    
    
     x
    
    
     )
    
   
   
    f(x)=max(0,x)
   
  
 f(x)=max(0,x)
import matplotlib.pyplot as plt
import torch.nn.functional asF
x = torch.linspace(-10,10,1000)
y =F.relu(x)
plt.plot(x,y)
plt.show()

在这里插入图片描述

1.4 Softmax

      p
     
     
      i
     
    
    
     =
    
    
     
      
       e
      
      
       
        a
       
       
        i
       
      
     
     
      
       
        ∑
       
       
        
         k
        
        
         =
        
        
         1
        
       
       
        N
       
      
      
       
        e
       
       
        
         a
        
        
         k
        
       
      
     
    
    
    
     
      
       ∂
      
      
       
        p
       
       
        i
       
      
     
     
      
       ∂
      
      
       
        a
       
       
        j
       
      
     
    
    
     =
    
    
     
      {
     
     
      
       
        
         
          
           
            p
           
           
            i
           
          
          
           (
          
          
           1
          
          
           −
          
          
           
            p
           
           
            j
           
          
          
           )
          
         
        
       
       
        
         
          
           i
          
          
           =
          
          
           j
          
         
        
       
      
      
       
        
         
          
           −
          
          
           
            p
           
           
            i
           
          
          
           
            p
           
           
            j
           
          
         
        
       
       
        
         
          
           i
          
          
           ≠
          
          
           j
          
         
        
       
      
     
    
   
   
    p_i=\frac{e^{a_i}}{\sum_{k=1}^N{e^{a_k}}}\\ \frac{\partial p_i}{\partial a_j}=\left\{ \begin{array}{lc} p_i(1-p_j) & i=j \\ -p_ip_j&i\neq j\\ \end{array} \right.
   
  
 pi​=∑k=1N​eak​eai​​∂aj​∂pi​​={pi​(1−pj​)−pi​pj​​i=ji​=j​
import torch.nn.functional asF
logits = torch.rand(10)
prob =F.softmax(logits,dim=0)print(prob)
tensor([0.1024, 0.0617, 0.1133, 0.1544, 0.1184, 0.0735, 0.0590, 0.1036, 0.0861,
        0.1275])

2.损失函数

2.1 MSE

import torch.nn.functional asF
x = torch.rand(100,64)
w = torch.rand(64,1)
y = torch.rand(100,1)
mse =F.mse_loss(y,x@w)print(mse)
tensor(238.5115)

2.2 CorssEntorpy

import torch.nn.functional asF
x = torch.rand(100,64)
w = torch.rand(64,10)
y = torch.randint(0,9,[100])
entropy =F.cross_entropy(x@w,y)print(entropy)
tensor(3.6413)

3. 求导和反向传播

3.1 求导

  • Tensor.requires_grad_()
  • torch.autograd.grad()
import torch.nn.functional asFimport torch
x = torch.rand(100,64)
w = torch.rand(64,1)
y = torch.rand(100,1)
w.requires_grad_()
mse =F.mse_loss(x@w,y)
grads = torch.autograd.grad(mse,[w])print(grads[0].shape)
torch.Size([64, 1])

3.2 反向传播

  • Tensor.backward()
import torch.nn.functional asFimport torch
x = torch.rand(100,64)
w = torch.rand(64,10)
w.requires_grad_()
y = torch.randint(0,9,[100,])
entropy =F.cross_entropy(x@w,y)
entropy.backward()
w.grad.shape
torch.Size([64, 10])

by CyrusMay 2022 06 28

人生 只是 须臾的刹那
人间 只是 天地的夹缝
——————五月天(因为你 所以我)——————


本文转载自: https://blog.csdn.net/Cyrus_May/article/details/125500584
版权归原作者 CyrusMay 所有, 如有侵权,请联系我们删除。

“Pytorch(二) —— 激活函数、损失函数及其梯度”的评论:

还没有评论