吴恩达机器学习——第五周学习笔记

神经网络代价函数(Cost Function)正则化逻辑回归的代价函数:神经网络的代价函数:L:是神经网络架构的层数Sl:l层的单元个数K:输出单元的个数sigmoid函数:def sigmoid(z): return 1 / (1 + np.exp(-z))前向传播函数:#前向传播函数def

独孤九剑第三式-决策树和随机森林

🍌文章适合于所有的相关人士进行学习🍌🍋各位看官看完了之后不要立刻转身呀🍋🍑期待三连关注小小博主加收藏🍑🍉小小博主回关快 会给你意想不到的惊喜呀🍉文章目录🌴前言🌴决策树理论讲解🌱问题引出🌱问题解决🌾信息熵🌾条件熵🌾信息增益🌾信息增益率🌾基尼指数🌾条件基尼指数🌾基尼

读博,我想好了

大家好,我是对白。今天给大家分享一位机器学习大佬王鸿伟当时选择读博的心得,希望对想去生造的朋友们一些建议与帮助,以下为原文。好久不在知乎写东西,今天读到张教授的一篇读博劝退文颇有感触,也想来写一些自己的想法。本文并非读博劝进贴,不想无脑鼓励大家都读博;本文也并非驳斥张教授的观点,只是想围绕这个话题多

在 Pandas 中使用 Merge、Join 、Concat合并数据的效率对比

在 Pandas 中有很多种方法可以进行DF的合并。本文将研究这些不同的方法,以及如何将它们执行速度的对比。

独孤九剑第一式-岭回归和Lasso回归

🍌文章适合于所有的相关人士进行学习🍌🍋各位看官看完了之后不要立刻转身呀🍋🍑期待三连关注小小博主加收藏🍑🍉小小博主回关快 会给你意想不到的惊喜呀🍉文章目录🐲前言🐲岭回归🐮岭回归的引出🐮岭回归的系数推导🐮岭回归代码部分🐲Lasso回归模型🐮Lasso代码部分🐲前言从今天开

机器学习之自然语言处理——中文分词jieba库详解(代码+原理)

目录文本分类概述文本分类的应用文本分类的挑战文本分类的算法应用文本分类所需知识中文分词神器-jiebajieba分词的三种模式词性标注载入词典(不分词)词典中删除词语(不显示)停用词过滤调整词语的词频关键词提取基于TF-IDF算法的关键词提取基于 TextRank 算法的关键词抽取返回词语在原文的起

数据科学中的 10 个重要概念和图表的含义

“当算法给你一条曲线时,一定要知道这个曲线的含义!”

欢迎来到对抗路——机器学习-多元线性回归模型(详解)

🍌文章适合于所有的相关人士进行学习🍌🍋各位看官看完了之后不要立刻转身呀🍋🍑期待三连关注小小博主加收藏🍑🍉小小博主回关快 会给你意想不到的惊喜呀🍉文章目录🐲前言🐲多元线性回归模型讲解🐮公式推导🐮案例🐮案例解决代码🐮数据哑变量处理🐮如何判断是否线性相关🐺模型的F检验🐷提

在时间序列中使用Word2Vec学习有意义的时间序列嵌入表示

在这篇文章中,介绍了众所周知的 Word2Vec 算法的推广,用于学习有价值的向量表示。我们在时间序列上下文中应用 Word2Vec,并展示了这种技术在非标准 NLP 应用程序中的有效性。整个过程可以很容易地集成到任何地方,并且很容易用于迁移学习任务。

机器学习入门-一元线性回归模型的骚操作

🐸文章适合于所有的相关人士进行学习🐸🐶各位看官看完了之后不要立刻转身呀🐶🐼期待三连关注小小博主加收藏🐼🐤小小博主回关快 会给你意想不到的惊喜呀🐤文章目录🚩前言🚩一元线性回归模型讲解☁️我们可能会遭遇的问题☁️线性回归模型🚩数学公式推导☁️公式推导☁️代码介绍及实现🌊jupyt

520不要老想着谈恋爱要变的更加爱强化学习

快速了解强化学习

基于LSTM的时空序列预测任务文章总结

时空序列预测任务,LSTM单元结构

李宏毅老师《机器学习》课程笔记-3卷积神经网络

介绍了深度学习在图像识别领域的应用—卷积神经网络。

机器学习系列(14)_PCA对图像数据集的降维_03

文章目录一、噪音过滤1、案例:手写数字图像识别一、噪音过滤降维的目的之一是希望抛弃对模型带来负面影响的特征,同时,带有效信息的特征的方差应该是远大于噪音的,所以相比噪音,有效的特征所带来的信息不会在PCA当中大量抛弃。inverse_transform能够在不恢复原始数据的情况下,将降维后的数据返回

数学建模学习(69):朴素贝叶斯回归分类,轻松掌握

手把手教你使用贝叶斯回归分类模型

正则化——参数范数惩罚

L1和L2正则化

神经网络入门(详细 )

机器学习流程、K近邻算法,以及详细介绍了神经网络的基本框架。

Python 3.11比3.10 快60%:使用冒泡排序和递归函数对比测试

Python 3.11中特意强调了优化,我们可以实际验证下到底有没有官方说的平均1.25倍的提升呢?

机器学习作业(第十八次课堂作业)

机器学习作业(第十八次课堂作业)

机器学习——k近邻(KNN算法)工作原理、代码实现详解

机器学习——k近邻(KNN算法)工作原理、欧式距离、代码实现详解