0


机器学习作业(第十八次课堂作业)

机器学习作业(第十八次课堂作业)

按照课堂所示范例逐步计算(画出各种表)如下多分类的Micro(微), Macro (宏)& Weighted Averages (加权) F1 Score、Recall、precision,和混淆矩阵(confusion matrix)。并用sklearn编程验证你的手动计算。

手动计算

请添加图片描述

sklearn编程验证

import numpy as np 
from sklearn.metrics import precision_score, recall_score, f1_score
Actual = np.array(['cat','cat','cat','cat','dog','dog','dog','bird','bird'])
Predicted= np.array(['cat','cat','cat','cat','dog','dog','cat','dog','bird'])print(recall_score(Actual, Predicted, average ='micro'))print(precision_score(Actual, Predicted, average ='micro'))print(f1_score(Actual, Predicted, average ='micro'))print(recall_score(Actual, Predicted, average ='macro'))print(precision_score(Actual, Predicted, average ='macro'))print(f1_score(Actual, Predicted, average ='macro'))print(recall_score(Actual, Predicted, average ='weighted'))print(precision_score(Actual, Predicted, average ='weighted'))print(f1_score(Actual, Predicted, average ='weighted'))

验证结果

在这里插入图片描述

结果与心得

macor与weighted在f1_score上存在数据不一致现象(原因尚未找到),其他数据结果一致。
原创不易 转载请标明出处
如果对你有所帮助 别忘啦点赞支持哈请添加图片描述


本文转载自: https://blog.csdn.net/T_Y_F_/article/details/124797313
版权归原作者 T_Y_F666 所有, 如有侵权,请联系我们删除。

“机器学习作业(第十八次课堂作业)”的评论:

还没有评论