AI:102-基于机器学习的法律勒索信息检测应用

AI:102-基于机器学习的法律勒索信息检测应用随着信息技术的迅猛发展,法律领域也逐渐借助人工智能(AI)技术来提升效率和精确性。本文将深入探讨机器学习在法律领域中的一个关键应用——勒索信息检测。通过使用机器学习算法,我们能够更有效地识别潜在的勒索信息,帮助法律专业人士更好地处理案件。

结合PCA降维的DBSCAN聚类方法(附Python代码)

PCA,全称,即主成分分析。是一种降维方法,实现途径是提取特征的主要成分,从而在保留主要特征的情况下,将高维数据压缩到低维空间。在经过PCA处理后得到的低维数据,其实是原本的高维特征数据在某一低维平面上的投影只要维度较低,都可以视为平面,例如三维相对于四维空间也可以视为一个平面)。虽然降维的数据能够

4种SVM主要核函数及相关参数的比较

本文将用数据可视化的方法解释4种支持向量机核函数和参数的区别

合合TextIn团队发布 - 文档图像多模态大模型技术发展、探索与应用

合合信息TextIn(Text Intelligence)团队在2023年12月31日参与了中国图象图形学学会青年科学家会议 - 垂直领域大模型论坛。在会议上,丁凯博士分享了文档图像大模型的思考与探索,完整阐述了多模态大模型在文档图像领域的发展与探索,并表达了对未来发展路径和应用场景潜力的看法。

人工智能原理复习--机器学习

人工智能原理部分机器学习要考的部分

社团结构的划分及实现过程

从Barabasi在1999年首次发表关于无标度网络的论文后,对复杂网络的研究引起许多研究工作者的关注。复杂网络存在于人类现实社会中,存在于虚拟空间中,形态各异,复杂多变,但在统计意义上呈现很多相似的属性。在这些复杂网络中,存在一些内部链接紧密,外部链接稀疏的节点,这些节点组成的网络结构称为网络社团

加速Python循环的12种方法,最高可以提速900倍

在本文中,我将介绍一些简单的方法,可以将Python for循环的速度提高1.3到900倍。

Jupyter Notebook的10个常用扩展介绍

在本文中,我们将探索Jupyter Notebook提升我们数据科学经验的强大扩展组件。

【智能优化算法】人工免疫算法 (Immune Algorithm, IA), 1986

遗传算法的思想简单讲就是父代之间通过交叉互换以及变异产生子代,不断更新适应度更高的子代,从而达到优化的效果。而免疫算法本质上其实也是更新亲和度(这里对应上面的适应度)的过程,抽取一个抗原(问题),取一个抗体(解)去解决,并计算其亲和度,而后选择样本进行变换操作(免疫处理),借此得到得分更高的解样本,

神经网络中的分位数回归和分位数损失

在分位数回归中,我们不仅关注预测的中心趋势(如均值),还关注在分布的不同分位数处的预测准确性。Quantile loss允许我们根据所关注的分位数来量化预测的不确定性。

亚马逊云科技AI应用 SageMaker 新突破,机器学习优势显著

Amazon SageMaker是一种机器学习服务,帮助开发人员快速准备、构建、训练和部署高质量的机器学习模型。本文主要讲解了SageMaker的五项新功能,并使用Sagemaker部署模型并进行推理,最后对数据处理。新功能给SageMaker的使用带来极大的便利,期待未来有更多的创新应用。

【数据挖掘大作业】基于决策树的评教指标筛选(weka+数据+报告+操作步骤)

数据挖掘大作业一、考核内容现有某高校评教数据(pjsj.xls),共计842门课程,属性包括:课程名称、评价人数、总平均分以及10个评价指标Index1-Index10。指标内容详见表1。表1 学生评教指标体系及权重序 号指 标权重(10%)Index1老师在第一节课能向我们介绍本课程的基

Python到机器学习再到深度学习:一条完整的人工智能学习之路

Python到机器学习再到深度学习:一条完整的人工智能学习之路

《神经网络与深度学习》算法伪代码汇总

《神经网络与深度学习》算法伪代码

数据对象属性分类

月份、日期、一天的时间描述(早上、上午、中午、下午、晚上、夜里),调查问卷的反馈(十分满意、比较满意、满意、一般、不满意、比较不满意、十分不满意),还有军衔、职级等等。从理论上讲,不论什么測量标度类型(标称的、序数的、区间的和比率的)都能够与基于属性值个数的随意类型(二元的、离散的和连续的)组合。此

人工智能计算机视觉:解析现状与未来趋势

人工智能计算机视觉的发展,如同一场精彩的科技盛宴,我们期待着更多创新的涌现,为未来的智能化世界贡献更多可能性。在迎接未知的同时,让我们保持对技术的敬畏之心,引导着它走向更加美好的未来。计算机视觉是人工智能的一个重要分支,其目标是使机器具备类似于人类视觉的能力。计算机视觉的不断发展不仅改变着我们对技术

一文读懂分类模型评估指标

模型评估是深度学习和机器学习中非常重要的一部分,用于衡量模型的性能和效果。本文将逐步分解混淆矩阵,准确性,精度,召回率和F1分数。

处理不平衡数据的过采样技术对比总结

在不平衡数据上训练的分类算法往往导致预测质量差。过采样提供了一种在模型训练开始之前重新平衡类的方法。

EDA中常用的9个可视化图表介绍和代码示例

在这篇文章中我们介绍EDA中常用的9个图表,并且针对每个图表给出代码示例。

深度学习基础实例与总结

感知机(Perceptron),又称神经元(Neuron,对生物神经元进行了模仿)是神经网络(深度学习)的起源管法,1958年由康奈尔大学心理学教授弗兰克·罗森布拉特(Frank Rosenblatt) 提出,它可以接收多个输入信号,产生一个输出信号。其中,x1ix_1ix1​i和x2x_2x2​称