基于Gym Anytrading 的强化学习简单实例

Gym Anytrading是一个建立在OpenAI Gym之上的开源库,它提供了一系列金融交易环境。它允许我们模拟各种交易场景,并使用RL算法测试不同的交易策略。

通用人工智能之路:什么是强化学习?如何结合深度学习?

【专栏订阅必读】ChatGPT强大魔力的关键因素之一是应用了强化学习模型,本文系统梳理强化学习中环境、智能体、奖赏、动作、状态等关键概念,并给出深度强化学习框架。

【深度强化学习】(5) DDPG 模型解析,附Pytorch完整代码

深度确定性策略梯度算法 (Deterministic Policy Gradient,DDPG)。DDPG 算法使用演员-评论家(Actor-Critic)算法作为其基本框架,采用深度神经网络作为策略网络和动作值函数的近似,使用随机梯度法训练策略网络和价值网络模型中的参数。DDPG 算法架构中使用双

使用Actor-Critic的DDPG强化学习算法控制双关节机械臂

在本文中,我们将介绍在 Reacher 环境中训练智能代理控制双关节机械臂

Webots搭建强化学习二轮避障小车(看看吧 蛮详细的)

此文为使用webots搭建二轮机器人并进行避障设计的全过程,各部分足够详细,对于初学者能起到不少帮助。同时也包含强化学习DQN算法进行避障的尝试。有兴趣可以一看。

利用强化学习Q-Learning实现最短路径算法

本文中我们将尝试找出一种方法,在从目的地a移动到目的地B时尽可能减少遍历路径。我们使用自己的创建虚拟数据来提供演示,下面代码将创建虚拟的交通网格:

深度强化学习DRL训练指南和现存问题(D3QN(Dueling Double DQN))

深度强化学习DRL现存问题和训练指南(D3QN(Dueling Double DQN))

多智能体强化学习之MAPPO理论解读

多智能体强化学习之MAPPO算法MAPPO训练过程本文主要是结合文章Joint Optimization of Handover Control and Power Allocation Based on Multi-Agent Deep Reinforcement Learning对MAPPO算法

【深度强化学习】(4) Actor-Critic 模型解析,附Pytorch完整代码

行动者评论家方法是由行动者和评论家两个部分构成。行动者用于选择动作,评论家评论选择动作的好坏。Critic 是评判网络,当输入为环境状态时,它可以评估当前状态的价值,当输入为环境状态和采取的动作时,它可以评估当前状态下采取该动作的价值。Actor 为策略网络,以当前的状态作为输入,输出为动作的概率分

【深度强化学习】多智能体算法汇总

本文收纳了常见的多智能体强化学习方法,并简单介绍各个算法。

【深度强化学习】(7) SAC 模型解析,附Pytorch完整代码

Deepmind 提出的 SAC (Soft Actor Critic) 算法是一种基于最大熵的无模型的深度强化学习算法,适合于真实世界的机器人学习技能。SAC 算法的效率非常高,它解决了离散动作空间和连续性动作空间的强化学习问题。SAC 算法在以最大化未来累积奖励的基础上引入了最大熵的概念,加入熵

【强化学习】Q-Learning算法详解

1 Q-Learning算法简介1.1 行为准则我们做很多事情都有自己的行为准则,比如小时候爸妈常说:不写完作业就不准看电视。所以我们在写作业这种状态下,写的好的行为就是继续写作业,知道写完他,我们还可以得到奖励。不好的行为就是没写完就跑去看电视了,被爸妈发现,后果很严重。小时候这种事情做多了,也就

DRL基础(一)——强化学习发展历史简述

【摘要】这篇博客简要介绍强化学习发展历史:起源、发展、主要流派、以及应用举例。强化学习理论和技术很早就被提出和研究了,属于人工智能三大流派中的行为主义。强化学习一度成为着人工智能研究的主流,最近十年多年随着以深度学习为基础的联结主义的兴起,强化学习在感知和表达能力上得到了巨大提升,在解决某些领域的问

DDPG强化学习的PyTorch代码实现和逐步讲解

深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)是受Deep Q-Network启发的无模型、非策略深度强化算法,是基于使用策略梯度的Actor-Critic,本文将使用pytorch对其进行完整的实现和讲解

7个流行的强化学习算法及代码实现

目前流行的强化学习算法包括 Q-learning、SARSA、DDPG、A2C、PPO、DQN 和 TRPO。 这些算法已被用于在游戏、机器人和决策制定等各种应用中,并且这些流行的算法还在不断发展和改进,本文我们将对其做一个简单的介绍。

用强化学习玩《超级马里奥》

Pytorch的一个强化的学习教程( Train a Mario-playing RL Agent)使用超级玛丽游戏来学习双Q网络(强化学习的一种类型)

强化学习的基础知识和6种基本算法解释

本文将涉及强化学习的术语和基本组成部分,以及不同类型的强化学习(无模型、基于模型、在线学习和离线学习)。本文最后用算法来说明不同类型的强化学习。

用强化学习玩《超级马里奥》

Pytorch的一个强化的学习教程( Train a Mario-playing RL Agent)使用超级玛丽游戏来学习双Q网络(强化学习的一种类型)

使用PyTorch实现简单的AlphaZero的算法(3):神经网络架构和自学习

神经网络架构和训练、自学习、棋盘对称性、Playout Cap Randomization,结果可视化

使用PyTorch实现简单的AlphaZero的算法(2):理解和实现蒙特卡洛树搜索

本篇文章将实现AlphaZero的核心搜索算法:蒙特卡洛树搜索