5篇关于强化学习在金融领域中应用的论文推荐

近年来机器学习在各个金融领域各个方面均有应用,其实金融领域的场景是很适合强化学习应用

强化学习 | 策略梯度 | Natural PG | TRPO | PPO

递进学习策略梯度:从 Gradient、Policy Gradient (REINFORCE、Q Actor-Critic、Advantage Actor-Critic ) 至 Natural Policy Gradient、TRPO、PPO 。逻辑清晰,含大量手写笔记,注释了黎曼流形、Hessia

论文推荐:StarCraft II Unplugged 离线强化学习

在本文中,我们将介绍 StarCarft II Unplugged 论文 [1],本论文可以将AlphaStar进行了扩展或者说更好的补充解释,绝对值得详细阅读。

通过强化学习和官方API制作《星露谷物语》的自动钓鱼mod

使用官方 Stardew Valley 的 modding API 用 C# 编写一个自动钓鱼的mod

AlphaZero如何学习国际象棋的?

DeepMind 和 Google Brain 研究人员以及前世界国际象棋冠军Vladimir Kramnik通过概念探索、行为分析和对其激活的检查,探索了人类知识是如何获得的,以及国际象棋概念如何在 AlphaZero 神经网络中表示。

开启深度强化学习之路:Deep Q-Networks简介和代码示例

Deep Q-Learning 算法是深度强化学习的核心概念之一。神经网络将输入状态映射到(动作,Q 值)对。在本篇文章中将通过游戏的示例来介绍 Deep Q-Networks 的整个概念