Java / Tensorflow - API 调用 pb 模型使用 GPU 推理
Java x Tensorflow x GPU 使用与踩坑指南。
炫酷的花式滑块滑动无缝切换特效
炫酷的花式滑块滑动无缝切换特效源码 海拥资源库-源码-网站-游戏-技术
MindSpore安装教程
MindSpore说明:(非常实用)MindSpore:新一代AI开源计算框架。创新编程范式,AI科学家和工程师更易使用,便于开放式创新;该计算框架可满足终端、边缘计算、云全场景需求,能更好保护数据隐私;可开源,形成广阔应用生态。2020年3月28日,华为在开发者大会2020上宣布,全场景AI计算框
Nature子刊:一个从大脑结构中识别阿尔茨海默病维度表征的深度学习框架
脑部疾病的异质性是精准诊断/预后的一个挑战。作者描述并验证了一种名为Smile-GAN(SeMI-supervised cLustEring-Generative Adversarial Network),的半监督深度聚类方法,它研究了与正常大脑结构对比的神经解剖学异质性,从而通过神经影像特征识别疾
【深度学习100例】—— 使用PyTorch实现验证码识别 | 第4例
这里我们需要重写DataSet类,加载我们的验证码数据和label标签文件。# 加载数据集,自己重写DataSet类 class dataset(Dataset) : # root_dir为数据目录,label_file,为标签文件 def __init__(self , root_dir , la
【国庆特辑文章】时间序列~动态时间规整(Dynamic Time Wraping)
解决的问题:测量两端时间序列的相似性
【XGBoost】第 7 章:使用 XGBoost 发现系外行星
在本章中,您将穿越星星,尝试以为向导发现系外行星。本章的原因是双重的。首先是使用 XGBoost 在自上而下的研究中获得实践非常重要,因为出于所有实际目的,这就是您通常使用 XGBoost 所做的事情。尽管您可能无法自己发现带有 XGBoost 的系外行星,但您在此处实施的策略(包括选择正确的评分指
softmax回归与交叉熵损失
回归与分类是机器学习中的两个主要问题,二者有着紧密的联系,但又有所不同。在一个预测任务中,回归问题解决的是多少的问题,如房价预测问题,而分类问题用来解决是什么的问题,如猫狗分类问题。分类问题又以回归问题为基础,给定一个样本特征,模型针对每一个分类都返回一个概率,于是可以认为概率最大的类别就是模型给出
深度学习模型理解-CNN-手写数据字代码
图像(不同的数据窗口数据)和滤波矩阵(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的『卷积』操作,也是卷积神经网络的名字来源。非严格意义上来讲,下图中红框框起来的部分便可以理解为一个滤波器,即带着一组固定权重的神
人工智能算法一&逻辑回归
人工智能算法一&逻辑回归
基于affine+sift特征提取的图像配准算法matlab仿真
由于相机正面拍摄物体时,相机的光轴方向可能发生变化,带来扭曲,所以第一步是对每张图片进行变换,模拟所有可能的仿射扭曲。设原始图像为 u ( x , y ),原始图像在 X 轴上倾斜度为 t 的变换由 u ( x , y ) → u (t x , y)得到。因此,需要通过实验比较室内外拍摄的图片对,并
聚类-KMeans算法(图解算法原理)
k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,也就是将数据分成K个簇的算法,其中K是用户指定的。
【Python数据科学快速入门系列 | 09】Matplotlib数据关系图表应用总结
本篇文章总结常用的数据关系图表。数据关系图表强调2个或以上变量的相关性关系。例如机器学习、深度学习时分析特征与标签的相关性分析。数据关系图表又分为数值关系、层次关系和网络关系三种。曲线图、散点图、散点矩阵图在机器学习和深度学习中应用到也较多,除了matplotlib可以绘制以外,pandas也带有很
大数据趣味学习探讨(二):我是怎么坚持学习的
2.1、调研日前,北京大数据研究院联合大数据分析与应用技术国家工程实验室、北京治数科技有限公司共同发布了《2022年中国大数据产业发展指数报告》。研究团队在2020年、2021年连续发布大数据产业发展指数的基础上,深入调研了各地大数据政策环境、大数据产业和企业发展状况,基于自身企业库中收录的 747
贝叶斯回归:使用 PyMC3 实现贝叶斯回归
在这篇文章中,我们将介绍如何使用PyMC3包实现贝叶斯线性回归,并快速介绍它与普通线性回归的区别。
机器学习之手写决策树以及sklearn中的决策树及其可视化
(2)如果属性划分次数达到上限,即属性划分完了,或者是样本中在此类属性取值都一样,可以认为全部划分仍然存在不同类的样本,那么这个节点就标记为类别数占较多的叶节点。划分选择还是比较重要的,因为不同的划分选择会建出不同的决策树。划分选择的指标就是希望叶节点的数据尽可能都是属于同一类,即节点的“纯度”越来
基于Python的视频中的人脸识别系统设计与实现
所以我们想到如果说我们可以找到这个视频的镜头切换点或者说剪辑点,对于一个视频而言后期剪辑会将不同机位拍摄的视频剪辑在一起,而这个剪辑点是很好找的,所以只要找到这视频的剪辑点就相当于找到了这个视频的镜头切换点,就可以将一段视频分段,分成一段只有一个主持人的样子,并且将每一段所对应的时间记录下来生成一个
SE5边缘计算盒子学习笔记-week1
题主在做的本科生科研项目中用到了这款盒子,而题主很苦逼地既没有linux系统使用经验,也没有这类盒子的使用经验,所以本贴完完全全是记录题主的踩坑之路,如果题主能坚持写下去的话,大概会从环境安装开始一直到写到程序跑通并且熟练应用这款盒子为止。
OpenAi multi-agent 多智能体环境搭建
open-ai Multi-Agent多智能体深度强化学习环境搭建