rk3588使用npu进行模型转换和推理,加速AI应用落地
本来想使用tensorrt进行加速推理,但是前提需要cuda,rk的板子上都是Arm的手机gpu,没有Nvidia的cuda,所以这条路行不通。使用该NPU需要下载RKNN SDK,RKNN SDK 为带有 NPU 的RK3588S/RK3588 芯片平台提供编程接口,能够帮助用户部署使用 RKNN
神经网络算法基本原理及其实现
目录背景知识人工神经元模型激活函数网络结构工作状态学习方式BP算法原理算法实现(MATLAB)背景知识在我们人体内的神经元的基本结构,相信大家并不陌生,看完下面这张图,相信大家都能懂什么是人工神经网络?人工神经网络是具有适应性的简单神经元组成的广泛并互连的网络,它的组织能够模拟生物神经系统对真实世界
【双目视觉】 SGBM算法应用(Python版)
我们可以通过cv.remap()函数来将img2映射到img1对应位置上并合成。:重映射,即把一幅图像内的像素点放置到另外一幅图像内的指定位置,俗称“拼接”四种模式,它们的精度和速度呈反比,可根据情况来选择不同的模式.自制的标定数据集,必须用自己相机拍摄照片制作数据集。函数为opencv集成的算法;
权重确定方法五:CRITIC权重法
CRITIC权重法是一种基于数据波动性的客观赋权法。其思想在于两项指标,分别是波动性(对比强度)和冲突性(相关性)指标。对比强度使用标准差进行表示,如果数据标准差越大说明波动越大,权重会越高;冲突性使用相关系数进行表示,如果指标之间的相关系数值越大,说明冲突性越小,那么其权重也就越低。权重计算时,
VMware ESXi安装NVIDIA GPU显卡硬件驱动和配置vGPU
一、驱动软件准备:从nvidia网站下载驱动,注意,和普通显卡下载驱动地址不同。按照ESXi对应版本不同下载不同的安装包。安装包内含ESXi主机驱动和虚拟机驱动。GPU显卡和物理服务器兼容查询:(重要:一定要查兼容,最近遇到一客户反馈安装驱动后运行nvidia-smi各种报错,最后查询是因为不兼容导
yolov5 训练结果解析
yolov5 训练结果解析在每次训练之后,都会在runs-train文件夹下出现一下文件,如下图:一:weights包含best.pt(做detect时用这个)和last.pt(最后一次训练模型)二:confusion1:混淆矩阵:①:混淆矩阵是对分类问题的预测结果的总结。使用计数值汇总正确和不正确
深度学习 简介
在介绍深度学习之前,我们先看下人工智能,机器学习和深度学习之间的关系:机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:传统机器学习算术依赖人工设计特征,并进行特征提取,而深度学习方法不需要人工,而是依赖算法
MAE详解
目录一、介绍二、网络结构1. encoder2. decoder3. LOSS三、实验全文参考:论文阅读笔记:Masked Autoencoders Are Scalable Vision Learners_塔_Tass的博客-CSDN博客masked autoencoders(MAE)是hekai
(Note)优化器Adam的学习率设置
从统计的角度看,Adam的自适应原理也是根据统计对梯度进行修正,但依然离不开前面设置的学习率。如果学习率设置的过大,则会导致模型发散,造成收敛较慢或陷入局部最小值点,因为过大的学习率会在优化过程中跳过最优解或次优解。同时神经网络的损失函数基本不是凸函数,而梯度下降法这些优化方法主要针对的是凸函数,所
QGC地面站使用教程
文章目录前言一、前言QGC地面站版本:一、
深度强化学习-TD3算法原理与代码
引言Twin Delayed Deep Deterministic policy gradient (TD3)是由Scott Fujimoto等人在Deep Deterministic Policy Gradient (DDPG)算法上改进得到的一种用于解决连续控制问题的在线(on-line)异策(
【人工智能】利用α-β搜索的博弈树算法编写一字棋游戏(QDU)
人工智能 α-β剪枝 博弈树 井字棋 青岛大学 QDU
计算机视觉教程3-1:全面详解图像边缘检测算法(附Python实战)
图像边缘检测算法种类繁多,本文系统梳理了图像边缘检测算法,并都附上了Python实战代码加深理解,便于二次开发
自然语言处理—文本分类综述/什么是文本分类
最近在学习文本分类,读了很多博主的文章,要么已经严重过时(还在一个劲介绍SVM、贝叶斯),要么就是机器翻译的别人的英文论文,几乎看遍全文,竟然没有一篇能看的综述,花了一个月时间,参考了很多文献,特此写下此文。思维导图https://www.processon.com/mindmap/61888043
语义分割系列7-Attention Unet(pytorch实现)
本文介绍了AttentionUnet模型和其主要中心思想,并在pytorch框架上构建了Attention Unet模型,构建了Attention gate模块,在数据集Camvid上进行复现。
计算机视觉——相机标定
相机标定
关于 FLOPS、FLOPs、参数量的相关计算
最近找到一些计算FLOPs的文章,奈何全是水文,讲都讲不清楚,完完全全的究极缝合怪。因此,这里准备彻底搞懂。
【算法】跑ORB-SLAM3遇到的问题、解决方法、效果展示(环境:Ubuntu18.04+ROS melodic)
文章目录一、编译出现的各种问题1、问题:OpenCV > 4.4 not found2、问题:error: ‘slots_reference’ was not declared in this scope二、ORB-SLAM3 效果展示一、编译出现的各种问题1、问题:OpenCV > 4
YOLOv5-v6.0学习笔记
YOLOv5-6.0版本的Backbone主要分为Conv模块、CSPDarkNet53和SPPF模块。YOLOv5在Conv模块中封装了三个功能:包括卷积(Conv2d)、Batch Normalization和激活函数,同时使用autopad(k, p)实现了padding的效果。其中YOLOv
对sklearn中transform()和fit_transform()的深入理解
对sklearn中transform()和fit_transform()的深入理解