基于CNN-RNN的医疗文本生成
本项目使用经过IMAGENET预训练的resnet101网络图像特征进行提取后,将图像特征输入LSTM来生成影像的文本描述。初步实现了图像到文本的简单生成。
评估和选择最佳学习模型的一些指标总结
在评估模型时,虽然准确性是训练阶段模型评估和应用模型调整的重要指标,但它并不是模型评估的最佳指标,我们可以使用几个评估指标来评估我们的模型。
Yolov5更换上采样方式
将原本的的上采样方式替换为转置卷积;有人通过实验证明了确实涨点,但是我在VOC数据集上测试并没有涨点,大概掉了不到1点。
位置编码(PE)是如何在Transformers中发挥作用的
Transformers不像LSTM具有处理序列排序的内置机制,它将序列中的每个单词视为彼此独立。所以使用位置编码来保留有关句子中单词顺序的信息。
【时序预测完整教程】以气温预测为例说明论文组成及PyTorch代码管道构建
时间序列预测论文组成及PyTorch代码管道构建详解。
【自动驾驶模拟器AirSim快速入门 | 03】模型训练
在本笔记本中,我们将定义网络架构并训练模型。我们还将讨论数据上的一些转换,以回应我们在笔记本的数据探索部分所做的观察。
Win11系统PyTorch环境安装配置
Win11系统PyTorch环境安装配置
主动学习(Active Learning) 概述、策略和不确定性度量
主动学习是指对需要标记的数据进行优先排序的过程,这样可以确定哪些数据对训练监督模型产生最大的影响。
Keras深度学习实战(10)——迁移学习
迁移学习 (Transfer Learning) 是机器学习中的一个重要研究方向,指将一个预训练的模型重新用于另一个任务中,和从零开始训练卷积神经网络相比,利用迁移学习,只需要少量样本即可训练得到性能较好的模型。本文我们将使用预训练的 VGG16 模型利用迁移学习进行性别分类任务实战。...
Curriculum Labeling:重新审视半监督学习的伪标签
Curriculum Labeling (CL),在每个自训练周期之前重新启动模型参数,优于伪标签 (PL)
PyTorch nn.RNN 参数全解析
全面解析 torch.nn.RNN
单目3D车辆检测全流程实战分享-附完整代码
基于M3D-RPN全流程实现单目3D检测,从数据处理到优化和部署的全流程实战分享
物理驱动的深度学习方法入门到详解
物理驱动的深度学习方法入门
使用神经网络模型创建一个龙与地下城怪物生成器
龙与地下城(DND)于1974年发行第一版,现在所有RPG游戏都有它的影子,在本文中我们将使用神经网络构建一个能够生成平衡数据的怪物生成器
【自动驾驶模拟器AirSim快速入门 | 01】自动驾驶模拟器AirSim实战演练
项目面向自动驾驶初学者、研究人员和行业专家。项目以jupter notebook作为载体,使用流行的开源工具(如Keras、TensorFlow等)构建,项目提供数据集、源代码、AirSim模拟器,以便于实现自动驾驶快速仿真。...............
5篇关于特征嵌入的研究论文推荐
5篇最新的论文推荐
PyTorch 深度学习入门
深度学习是机器学习的一个分支,其中编写了模仿人脑功能的算法。深度学习中最常用的库是 Tensorflow 和 PyTorch。由于有各种可用的深度学习框架,人们可能想知道何时使用 PyTorch。以下是人们可能更喜欢将 Pytorch 用于特定任务的原因。Pytorch 是一个开源深度学习框架,带有
2022/6/13
The Reforce Leaning based on Q-learning method, which is used in the interactive control of autos in the one single intersection. Easily speaking, the
基于自动编码器的赛车视角转换与分割
本文将利用vae将汽车前置视像头的图像转换成分割后的鸟瞰图
MicroNet实战:使用MicroNet实现图像分类
本文通过对植物幼苗分类的实际例子来感受一下MicroNet模型的效果。模型来自官方,我自己写了train和test部分。从得分情况来看,这个模型非常的优秀,我选择用的MicroNet-M3模型,大小仅有6M,但是ACC在95%左右,成绩非常惊艳!!!这篇文章从实战的角度手把手带领大家完成训练和测试。