python 深度学习环境安装(tensorflow-gpu)

本文主要通过Anaconda来配置tensorflow-gpu环境,介绍了如何新建虚拟环境,下载cuda,cudnn,tensorflow-gpu,以及判断是否安装成功,最后介绍了在pycharm中新建项目来配置虚拟环境。

深度学习之30系显卡虚拟环境配置(100%成功,windows,英伟达30系显卡,torch版本1.7.1)

30系显卡配置深度学习所需要的虚拟环境非常麻烦,本文章整理了我个人安装虚拟环境的心得体会和经验,手把手教您配置好虚拟环境!

改善图形神经网络,提升GNN性能的三个技巧

本文总结了一些技巧来提高 GNN 模型的性能。

深度学习-用PyTorch实现面部形象分类(非常详细-适合初学者)

基于pytorch对面部形象分类,训练准确率99.97%,测试准确率96.76

SRCNN:基于深度学习的超分辨率开山之作回顾

本文提供了与SRCNN论文的总结和回顾,如果你对于图像的超分辨率感兴趣,一定要先阅读这篇论文,他可以说是所有基于深度学习的超分辨率模型的鼻祖

二、机器学习基础5(损失函数、梯度下降)

损失函数损失函数(Loss function)又叫做误差函数,用来衡量算法的运行情况.估量模型的预测值 f (x)与真实值 Y 的不一致程度,是一个非负实值函数,通常使用来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。常见的损失函数损失函数用

HIST:微软最新发布的基于图的可以挖掘面向概念分类的共享信息的股票趋势预测框架

2022 年 1 月微软研究院的提出了一种新颖的股票趋势预测框架,可以充分挖掘该概念面向来自预定义概念和隐藏概念的共享信息

二、机器学习基础6

计算图导数计算是反向传播,利用链式法则和隐式函数求导。线性判别分析(LDA )思想总结线性判别分析(Linear DiscriminantAnalysis,LDA)是一种经典的降维方法。和 PCA 不考虑样本类别输出的无监督降维技术不同,LDA 是一种监督学习的降维技术,数据集的每个样本有类别输出。

NLP 进行文本摘要的三种策略代码实现和对比:TextRank vs Seq2Seq vs BART

本文将使用 Python 实现和对比解释 NLP中的3 种不同文本摘要策略:老式的 TextRank(使用 gensim)、著名的 Seq2Seq(使基于 tensorflow)和最前沿的 BART(使用Transformers )

舍友居然偷偷在看这篇文章入门【机器学习】

kiko力求用最通俗的语言和实战案例来解释机器学习的相关内容!

从零到一实现神经网络(python):二

由单层感知机中的信号传递机制过渡到神经网络中的信号传递机制,通过一个包含2个隐藏层的4层神经网络实现了前向信号传播,介绍了sigmoid激活函数以及输出层经常用于误差计算的softmax函数

【YOLOv5-6.x】通过设置可学习参数来结合BiFPN

文章目录前言修改common.py修改yolo.pyyolov5s-bifpn.yaml测试结果References前言在之前的这篇博客中,简要介绍了BiFPN的原理,以及YOLOv5作者如何结合BiFPN:【魔改YOLOv5-6.x(中)】:加入ACON激活函数、CBAM和CA注意力机制、加权双向

神经网络学习小记录70——Pytorch 使用Google Colab进行深度学习

神经网络学习小记录70——Pytorch 使用Colab进行深度学习学习前言什么是Google ColabColab官网利用Colab进行训练一、数据集与预训练权重的上传1、数据集的上传2、预训练权重的上传二、打开Colab并配置环境1、笔记本的创建2、环境的简单配置3、深度学习库的下载4、数据集的

自动化的机器学习:5个常用AutoML 框架介绍

AutoML 可以为预测建模问题自动找到数据准备、模型和模型超参数的最佳组合,本文整理了5个最常见且被熟知的开源AutoML 框架。

Keras深度学习实战(1)——神经网络基础与模型训练过程详解

神经网络是一种性能强大的学习算法,其灵感来自大脑的运作方式。类似于神经元在大脑中彼此连接的方式,神经网络获取输入后,通过某些函数在网络中进行传递输入信息,连接在其后的一些神经元会被激活,从而产生输出。本文主要介绍神经网络中重要的基础知识,然后使用 Python 从零开始构建神经网络的训练流程,包括前

一步步教你查看cuda和cudnn版本

1.查看cuda版本win+R+enter回车,再输入cmd进入命令行,再输入nvcc --version或者输入nvcc -V即可得到cuda的版本,如图我的cuda版本是10.2查看cudnn版本进入目录查看cudnn_version.h文件一般放在:C:\Program Files\NVIDI

睿智的目标检测57——Tensorflow2 搭建YoloV5目标检测平台

睿智的目标检测57——Tensorflow2 搭建YoloV5目标检测平台学习前言源码下载YoloV5改进的部分(不完全)YoloV5实现思路一、整体结构解析二、网络结构解析1、主干网络Backbone介绍2、构建FPN特征金字塔进行加强特征提取3、利用Yolo Head获得预测结果三、预测结果的解

目标检测算法——YOLOv5将IOU Loss替换为EIOU Loss

将YOLOv5中的锚框损失函数替换为EIOU Loss,性能远优于原IOU、DIOU以及CIOU等,测试自身数据集发现涨点明显!

目标检测算法——YOLOv5结合BiFPN

将YOLOv5中的PANet层修改为EfficientDet-BiFPN,实现自上而下与自下而上的深浅层特征双向融合,明显提升YOLOv5算法检测精度。

2022 年 4 月 10篇 ML 研究论文推荐

Google 的 5400 亿参数 PaLM、Pathways、Kubric、Tensor Programs、Bootstrapping Reasoning With Reasoning、Sparse all-MLP 架构