Pytorch框架学习路径(二:张量操作)

张量操作文章目录张量操作张量拼接与切分torch.cat()torch.stack()torch.chunk()torch.split()张量索引torch.index_select()torch.masked_select()张量变换torch.reshape()torch.transpose()

PyTorch强化学习实战(1)——强化学习环境配置与PyTorch基础

工欲善其事,必先利其器。为了更专注于学习强化学习的思想,而不必关注其底层的计算细节,我们首先搭建相关强化学习环境,包括 PyTorch 和 Gym,其中 PyTorch 是我们将要使用的主要深度学习框架,Gym 则提供了用于各种强化学习模拟和任务的环境。除此之外,本文还介绍了一些 PyTorch 的

李宏毅老师《机器学习》课程笔记-4.2 Batch Normalization

介绍了Deep Neural Network 的加速优化的一个方法: Batch Normalization

Python实时监控GPU运行状态(含源码&jupyter-lab)

GPU运行状态监测介绍NVDashboard 是一个开源包,用于在交互式 Jupyter Lab 环境中实时可视化 NVIDIA GPU 指标。 NVDashboard 是所有 GPU 用户监控系统资源的好方法。然而,它对于 NVIDIA 的 GPU 加速数据科学软件库开源套件 RAPIDS 的用户

强化学习系列(一):基本原理和概念

目录一、什么是强化学习?二、强化学习的结构第一层第二层第三层三、价值函数1)Policy function:2)Value function:3)Q与V之间的转化3)Q值更新——贝尔曼公式四、强化学习的特点五、强化学习的优点一、什么是强化学习?这几年强化学习在学术界是非常的火热,想必大家或多或少都听

汉明距离、汉明损失详解及代码(python)

用具体的图示+代码,帮你理解汉明距离(Hamming distance)、汉明损失(Hamming loss)。

微调大型语言模型示例:使用T5将自然语言转换成SQL语句

在本文中,我们将使用谷歌的文本到文本生成模型T5和我们的自定义数据进行迁移学习,这样它就可以将基本问题转换为SQL查询。

深度对抗神经网络(DANN)笔记

一 总体介绍DANN是一种迁移学习方法,是对抗迁移学习方法的代表方法。基本结构由特征提取层f,分类器部分c和对抗部分d组成,其中f和c其实就是一个标准的分类模型,通过GAN(生成对抗网络)得到迁移对抗模型的灵感。但此时生成的不是假样本,而是假特征,一个足以让目标域和源域区分不开的假特征。而领域判别器

DeepLearning 中的 RNN 与 BRNN(双向RNN)

RNN下图为 RNN 隐藏层单元的可视化呈现:BRNN下图,紫色表示正向连接,绿色表示反向连接,通过下图箭头连接,这个网络就构成了一个无环图。如图,给定一个输入序列 X<1>--X<4>,这个序列首先计算前向的a<1>, 然后计算a<2>,接着a&lt

TensorFlow笔记_采用迁移学习的方法搭建MobileNetV2网络实现自建数据集的图像分类任务

自定义数据集完成图像分类任务:拍摄数据集,采用TFRecord创建和保存数据,采用迁移学习的方式搭建MobileNetV2网络,将模型转换为tflite,并加载tflite实现推理

【math系列】《深度学习》中主成分分析(PCA)的一个知识点证明

【线性代数】PCA中的数学证明题

Keras深度学习实战(11)——股价预测

我们已经学习了使用神经网络进行音频、文本等非结构化数据和房价、信用等结构化数据分析的相关任务。本节,通过股价预测应用,了解了神经网络在处理时间序列数据的一般流程,并学习了使用函数式 API 来构建复杂神经网络,通过利用相关新闻数据信息来提高预测准确性。

使用动图深入解释微软的Swin Transformer

本文旨在使用插图和动画为Swin Transformers提供全面的指南,以帮助您更好地理解这些概念。

python 关于CNN的一些思考-2022

今年(2022)CVPR有两篇关于CNN的论文让我印象深刻,因为它们不约而同的使用了更大的卷积核:疑问1:为什么之前很少有论文用大卷积核?疑问2:大卷积核为什么这么work?

PPOCRv3模型转pytorch

paddleocr模型转pytorch

【深度学习】常见的神经网络层(上)

在深度学习中常见的神经网络层的讲解

【论文阅读】Attention is all you need(Transformer)

文章目录前言1.Abstract2.Introduction3.Background4.Model Architecture4.1. Encoder and Decoder Stacks4.2. Attention4.2.1. Scaled Dot-Product Attention4.2.2.Mu

基于Python实现的口罩佩戴检测

口罩佩戴检测一 题目背景1.1 实验介绍今年一场席卷全球的新型冠状病毒给人们带来了沉重的生命财产的损失。有效防御这种传染病毒的方法就是积极佩戴口罩。我国对此也采取了严肃的措施,在公共场合要求人们必须佩戴口罩。在本次实验中,我们要建立一个目标检测的模型,可以识别图中的人是否佩戴了口罩。1.2 实验要求

在时间序列中使用Word2Vec学习有意义的时间序列嵌入表示

在这篇文章中,介绍了众所周知的 Word2Vec 算法的推广,用于学习有价值的向量表示。我们在时间序列上下文中应用 Word2Vec,并展示了这种技术在非标准 NLP 应用程序中的有效性。整个过程可以很容易地集成到任何地方,并且很容易用于迁移学习任务。