2022年第二届长三角高校数学建模竞赛B题经验、论文、代码展示

2022年第二届长三角高校数学建模竞赛B题经验、论文、代码展示1、题目要求其中数据附件一数据(截图部分):附件二数据(部分截图):在这里插入代码片问题一到问题四的思路:针对问题一,对附件 1 中的 5 个表单的四个传感器数据进行分析,提取相关特征。研究发现 VMD 方法在可以避免模态混叠问题。VMD

【Python】Python寻找多维数组(numpy.array)中最大值的位置(行和列)

最近需要从热力图中找出关键点的坐标,也就是极大值的行和列。搜寻了网上的一些方法,在这里总结一下。使用numpy进行多维数组中最大值的行和列搜寻非常的灵活,有以下几种方法可供参考。二维数组方法一:np.max()函数 + np.where()函数如下图所示,x是一个 3×3 的二维np.array,首

[总结] 半监督学习方法: 一致性正则化(Consistency Regularization)

基于平滑假设和聚类假设, 具有不同标签的数据点在低密度区域分离, 并且相似的数据点具有相似的输出. 那么, 如果对一个未标记的数据应用实际的扰动, 其预测结果不应该发生显著变化, 也就是输出具有一致性.

CVPR 2022 | 最全25+主题方向、最新50篇GAN论文汇总

一顿午饭外卖,成为CV视觉前沿弄潮儿35个主题!ICCV 2021最全GAN论文汇总超110篇!CVPR 2021最全GAN论文梳理超100篇!CVPR 2020最全GAN论文梳理在最新的视觉顶会CVPR2022会议中,涌现出了大量基于生成对抗网络GAN的论文,广泛应用于各类视觉任务;下述论文已分类

yolov5 训练结果解析

yolov5 训练结果解析在每次训练之后,都会在runs-train文件夹下出现一下文件,如下图:一:weights包含best.pt(做detect时用这个)和last.pt(最后一次训练模型)二:confusion1:混淆矩阵:①:混淆矩阵是对分类问题的预测结果的总结。使用计数值汇总正确和不正确

深度学习 简介

在介绍深度学习之前,我们先看下人工智能,机器学习和深度学习之间的关系:机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:传统机器学习算术依赖人工设计特征,并进行特征提取,而深度学习方法不需要人工,而是依赖算法

QGC地面站使用教程

文章目录前言一、前言QGC地面站版本:一、

自然语言处理—文本分类综述/什么是文本分类

最近在学习文本分类,读了很多博主的文章,要么已经严重过时(还在一个劲介绍SVM、贝叶斯),要么就是机器翻译的别人的英文论文,几乎看遍全文,竟然没有一篇能看的综述,花了一个月时间,参考了很多文献,特此写下此文。思维导图https://www.processon.com/mindmap/61888043

对sklearn中transform()和fit_transform()的深入理解

对sklearn中transform()和fit_transform()的深入理解

机器学习中的数学——距离定义(二):曼哈顿距离(Manhattan Distance)

曼哈顿距离是种使用在几何度量空间的几何学用语,用以标明两个点在标准坐标系上的绝对轴距总和。下图中红线代表曼哈顿距离,绿色代表欧氏距离,也就是直线距离,而蓝色和黄色代表等价的曼哈顿距离。曼哈顿距离在2维平面是两点在纵轴上的距离加上在横轴上的距离,即:d(x,y)=∣x1−y1∣+∣x2−y2∣d(x,

线性判别分析(LDA)详解

入门小菜鸟,希望像做笔记记录自己学的东西,也希望能帮助到同样入门的人,更希望大佬们帮忙纠错啦~侵权立删。目录一、LDA简介二、数学原理(以二分类为例子)1、设定2、每一类的均值和方差3、目标函数4、目标函数的求解三、多分类LDA四、LDA用途与优缺点1、用途2、优点3、缺点五、LDA的python应

机器学习强基计划0-2:什么是机器学习?和AI有什么关系?

用最通俗的例子和语言解释什么是机器学习,接着介绍机器学习和人工智能的关系,机器学习的用途以及学习路线

【seaborn】sns.set() 绘图风格设置

从这个set()函数,可以看出,通过它我们可以设置背景色、风格、字型、字体等。我们定义一个函数,这个函数主要是生成100个0到15的变量,然后用这个变量画出6条曲线。那么,问题来了,有人会说,这个set()函数这么多参数,只要改变其中任意一个参数的值,绘图效果就会发生变化,那我们怎么知道哪种搭配是最

ROS从入门到精通9-1:项目实战之智能跟随机器人原理与实现

智能跟随机器人是其中很常见的应用,在各类竞赛、创新项目、开源项目甚至商业项目中都有应用,2022年TI杯C赛题就是跟随机器人的应用,本文讲解智能跟随机器人原理和代码实现

【中国大学生计算机大赛二等奖】智能中医-中e诊简介(一)

中国大学生计算机设计大赛-人工智能赛道二等奖党的十九大以来,我国社会的主要矛盾已经变成了人民日益增长的对美好生活需要与不平衡、不充分发展之间的矛盾。美好生活的一个重要体现就是“健康生 活”,然而随着现代都市生活节奏不断加快,人们很多时候会忽视自己的身体健康。“工作太忙,没时间锻炼”、“应酬太多”,许

R实战 | 限制性立方样条(RCS)

RCS在科学研究中,我们经常构建回归模型来分析自变量和因变量之间的关系。大多数的回归模型有一个重要的假设就是自变量和因变量呈线性关联。当自变量和因变量之间为非线性关系时,可以将连续型变量转化为分类变量,但是分类变量的类别数目以及节点位置的选择一般会带有主观性并且分类变量会损失部分信息;也可以直接拟合

YOLOv3&YOLOv5输出结果说明

本文使用的yolov3和yolov5工程文件均为github上ultralytics基于pytorch的v3和v5代码,其训练集输出结果类型基本一致,主要介绍了其输出结果,本文是一篇学习笔记本文使用的yolov3代码github下载地址:yolov3模型训练具体步骤可查看此篇博客:yolov3模型训

灰色预测模型

python实现灰色预测

【控制】动力学建模简介 --> 牛顿-欧拉 (Newton-Euler) 法和拉格朗日 (Lagrange) 法

牛顿-欧拉方法是最开始使用的动力学建模分析方法,由于牛顿方程描述了平移刚体所受的外力、质量和质心加速度之间的关系,而欧拉方程描述了旋转刚体所受外力矩、角加速度、角速度和惯性张量之间的关系,因此可以使用牛顿-欧拉方程描述刚体的力、惯量和加速度之间的关系,建立刚体的动力学方程。拉格朗日方程是另一种经典的

机器学习笔记 - 什么是高斯混合模型(GMM)?

高斯混合模型 (GMM) 是一种机器学习算法。它们用于根据概率分布将数据分类为不同的类别。高斯混合模型可用于许多不同的领域,包括金融、营销等等!这里要对高斯混合模型进行介绍以及真实世界的示例、它们的作用以及何时应该使用GMM。高斯混合模型 (GMM) 是一个概率概念,用于对真实世界的数据集进行建模。