用pointnet++分类自己的点云数据
这篇博客主要是针对于现有的热门的激光点云处理算法pointnet++如何分类自己的数据集展开的。在介绍基本的pointnet++算法的概念、基本步骤及思想、部分代码讲解之后,会介绍如何使用自己的数据集进行分类(涉及到详细的代码改进方法及步骤)以及打印利用自己数据集跑出的模型后的点云坐标。
PyTorch的Dataset 和TorchData API的比较
从版本1.11开始,PyTorch引入了TorchData库,它实现了一种不同的加载数据集的方法。
如何检测时间序列中的异方差(Heteroskedasticity)
异方差性影响时间序列建模。因此检测和处理这种情况非常重要。
15个节省时间的Jupyter技巧
Jupyter Notebooks使用非常简单并且对于任何面向python的任务都可以非常方便的使用。
变分自编码器VAE的数学原理
变分自编码器(VAE)是一种应用广泛的无监督学习方法,它的应用包括图像生成、表示学习和降维等。
OpenAI发布ChatGPT:程序员瞬间不淡定了
2月1日,OpenAI发布了针对对话场景优化的语言大模型ChatGPT。一经发布便受到科技圈的广泛关注,我第一时间体验了ChatGPT,给大家奉上最新鲜的体验报告。
Pandas中高效的选择和替换操作总结
在本文中,我们将重点介绍在DataFrame上经常执行的两个最常见的任务,有效地选择特定的和随机的行和列,以及使用replace()函数使用列表和字典替换一个或多个值。
一文读懂K-Means原理与Python实现
在本文中,你将学习到K-means算法的数学原理,作者会以尼日利亚音乐数据集为案例。带你了解了如何通过可视化的方式发现数据中潜在的特征。最后对训练好的K-means模型进行评估。
计算机视觉面试中一些热门话题整理
通常在机器学习面试中,问完常见基础知识的技术问题之后会有具体的项目问题的讨论,所以这里准备了一些项目相关的话题,以可以帮助你准备和通过计算机视觉相关的面试。
强化学习的基础知识和6种基本算法解释
本文将涉及强化学习的术语和基本组成部分,以及不同类型的强化学习(无模型、基于模型、在线学习和离线学习)。本文最后用算法来说明不同类型的强化学习。
Python中的魔法方法
python中的魔法方法是一些可以让你对类添加“魔法”的特殊方法,它们经常是两个下划线包围来命名的
从另外一个角度解释AUC
AUC到底代表什么呢,我们从另外一个角度解释AUC
时间序列的蒙特卡罗交叉验证
交叉验证应用于时间序列需要注意是要防止泄漏和获得可靠的性能估计本文将介绍蒙特卡洛交叉验证。这是一种流行的TimeSeriesSplits方法的替代方法。
机器学习期末复习题题库-单项选择题
1.属于监督学习的机器学习算法是:贝叶斯分类器2.属于无监督学习的机器学习算法是:层次聚类3.二项式分布的共轭分布是:Beta分布4.多项式分布的共轭分布是:Dirichlet分布5.朴素贝叶斯分类器的特点是:假设样本各维属性独立6.下列方法没有考虑先验分布的是:最大似然估计7.对于正态密度的贝叶斯
基于MATLAB的语音去噪处理系统
一.滤波器的简述在MATLAB环境下IIR数字滤波器和FIR数字滤波器的设计方 法即实现办法,并进行图形用户界面设计,以显示所介绍迷你滤波器的设计特性。 在无线脉冲响应(IIR)数字滤波器设计中,先进行模拟滤波器的设计,然后进行模拟数字滤波器转换,即采取脉冲响应不变法及双线性Z变更法设计数字滤波器
NeurIPS 2022-10大主题、50篇论文总结
2672篇主要论文,63场研讨会,7场受邀演讲,包括语言模型、脑启发研究、扩散模型、图神经网络……NeurIPS包含了世界级的AI研究见解,本文将对NeurIPS 2022做一个全面的总结。
论文推荐:Rethinking Attention with Performers
重新思考的注意力机制,Performers是由谷歌,剑桥大学,DeepMind,和艾伦图灵研究所发布在2021 ICLR的论文已经超过500次引用
机器学习课后练习题(期末复习题目附答案)
此为第一章绪论部分一. 单选题1. 移动运营商对客户的流失进行预测,可以使用下面哪种机器学习方法比较合适( )A. 一元线性回归分析B. 关联方法C. 聚类算法D. 多层前馈网络正确答案: A2. 下面哪种说法有关机器学习的认识是错误的?( )A. 高质量的数据、算力和算法对一个机器学习项目是必不可
基于SARIMA、XGBoost和CNN-LSTM的时间序列预测对比
本文将讨论通过使用假设测试、特征工程、时间序列建模方法等从数据集中获得有形价值的技术。我还将解决不同时间序列模型的数据泄漏和数据准备等问题,并且对常见的三种时间序列预测进行对比测试。
SARScape中用sentinel-1数据做SBAS-InSAR完整流程(2/2)
SARScape中用sentinel-1数据做SBAS-InSAR完整流程(2/2)