一、什么是灰色预测
灰色系统是指系统数据有一些是未知,有一些是已知。白色系统是全都已知,黑色系统是全都未知。而灰色预测就是对含有已知和未知信息的系统进行预测,寻找数据变动规律,生成有较强规矩性的序列,再建立相应的微分方程模型,来对事物发展进行预测。
二、灰色预测建模流程图
三、建模步骤
3.1、在建模最开始,需要进行数据的级比检验
为了确定数据使用GM(1,1)模型的可行性需要在一开始对原始数据进行级比检验:
3.2、训练求解模型
对原始序列X0累加求和得到新的序列X1,可用一个指数曲线乃至一条直线的表达式来逼近这个新序列,构建一阶常微分方程来求解拟合曲线的函数表达式 。表达式中含有未知数a和u,求出a和u即可解出预测方程。
对于a和u的求解我们采用最小二乘法:
参数a和u已求出,代入原微分方程,对微分方程进行求解。
3.3、模型检验
四、代码实现(python)
class GM11():
def __init__(self):
self.f = None #预测方程
def examine(self,X0):
X1 = X0.cumsum() #对原始序列累加求和
rho = [X0[i] / X1[i - 1] for i in range(1, len(X0))]
rho_ratio = [rho[i + 1] / rho[i] for i in range(len(rho) - 1)]
print("rho:", rho)
print("rho_ratio:", rho_ratio)
flag = True
for i in range(2, len(rho) - 1):
if rho[i] > 0.5 or rho[i + 1] / rho[i] >= 1:
flag = False
if rho[-1] > 0.5:
flag = False
if flag:
print("数据通过光滑校验")
else:
print("该数据未通过光滑校验")
'''判断是否通过级比检验'''
lambds = [X0[i - 1] / X0[i] for i in range(1, len(X0))]
X_min = np.e ** (-2 / (len(X0) + 1))
X_max = np.e ** (2 / (len(X0) + 1))
for lambd in lambds:
if lambd < X_min or lambd > X_max:
print('该数据未通过级比检验')
return
print('该数据通过级比检验')
def train(self,X0):
X1 = X0.cumsum()
Z = (np.array([-0.5 * (X1[k - 1] + X1[k]) for k in range(1, len(X1))])).reshape(len(X1) - 1, 1)
A = (X0[1:]).reshape(len(Z), 1)
B = np.hstack((Z, np.ones(len(Z)).reshape(len(Z), 1)))
# 求常微分方程中的a u参数
a, u = np.linalg.inv(np.matmul(B.T, B)).dot(B.T).dot(A)
u = Decimal(u[0])
a = Decimal(a[0])
#求解预测方程
self.f = lambda k: (Decimal(X0[0]) - u / a) * np.exp(-a * k) + u / a
def predict(self, k):
X1_hat = [float(self.f(k)) for k in range(k)]
X0_hat = np.diff(X1_hat) #还原原始序列
X0_hat = np.hstack((X1_hat[0], X0_hat)) #添加上第一个数据
return X0_hat
def evaluate(self, X0_hat, X0):
S1 = np.std(X0, ddof=1) # 原始数据样本标准差
S2 = np.std(X0 - X0_hat, ddof=1) # 残差数据样本标准差
C = S2 / S1 # 后验差比
Pe = np.mean(X0 - X0_hat)
temp = np.abs((X0 - X0_hat - Pe)) < 0.6745 * S1
p = np.count_nonzero(temp) / len(X0) # 计算小误差概率
print("原数据样本标准差:", S1)
print("残差样本标准差:", S2)
print("后验差比:", C)
print("小误差概率p:", p)
import matplotlib.pyplot as plt
import numpy as np
#保证画图正常显示
plt.rcParams['font.sans-serif'] = ['SimHei'] # 步骤一(替换sans-serif字体)
plt.rcParams['axes.unicode_minus'] = False # 步骤二(解决坐标轴负数的负号显示问题)
# 原始数据X
X = np.array(
[21.2, 22.7, 24.36, 26.22, 28.18, 30.16, 32.34, 34.72, 37.3, 40.34, 44.08, 47.92, 51.96, 56.02, 60.14,
64.58,
68.92, 73.36, 78.98, 86.6])
# 训练集
X_train = X[:int(len(X) * 0.7)]
# 测试集
X_test = X[int(len(X) * 0.7):]
model = GM11()
model.isUsable(X_train) # 判断模型可行性
model.train(X_train) # 训练
Y_pred = model.predict(len(X)) # 预测
Y_train_pred = Y_pred[:len(X_train)]
Y_test_pred = Y_pred[len(X_train):]
score_test = model.evaluate(Y_test_pred, X_test) # 评估
# 可视化
plt.grid()
plt.plot(np.arange(len(X_train)), X_train, '->')
plt.plot(np.arange(len(X_train)), Y_train_pred, '-o')
plt.legend(['负荷实际值', '灰色预测模型预测值'])
plt.title('训练集')
plt.show()
plt.grid()
plt.plot(np.arange(len(X_test)), X_test, '->')
plt.plot(np.arange(len(X_test)), Y_test_pred, '-o')
plt.legend(['负荷实际值', '灰色预测模型预测值'])
plt.title('测试集')
plt.show()
版权归原作者 lshan508 所有, 如有侵权,请联系我们删除。