SPSS软件实操——ARIMA时间序列预测模型
案例:基于ARIMA模型对螺纹钢价格预测——以南昌市为例
机器学习中的数据预处理方法与步骤
机器学习预处理详细方法
Python绘制loss曲线、准确率曲线
使用 python 绘制网络训练过程中的的 loss 曲线以及准确率变化曲线,这里的主要思想就时先把想要的损失值以及准确率值保存下来,保存到 .txt 文件中,待网络训练结束,我们再拿这存储的数据绘制各种曲线。其大致步骤为:数据读取与存储 - > loss曲线绘制 - > 准确率曲线绘制我们首先要得
手把手调参最新 YOLOv7 模型 训练部分 - 最新版本(二)
YOLO科研Trick改进推荐 | 包括Backbone、Neck、Head、注意力机制、IoU损失函数、NMS、Loss计算方式、自注意力机制、数据增强部分、激活函数
机器学习分类算法之XGBoost(集成学习算法)
目录走进XGBoost什么是XGBoost?XGBoost树的定义XGBoost核心算法正则项:树的复杂程度XGBoost与GBDT有什么不同XGBoost需要注意的点XGBoost重要参数详解调参步骤及思想XGBoost代码案例相关性分析n_estimators(学习曲线)max_depth(学习
深度学习常见名词概念:Sota、Benchmark、Baseline、端到端模型、迁移学习等的定义
深度学习:Sota的定义sota实际上就是State of the arts 的缩写,指的是在某一个领域做的Performance最好的model,一般就是指在一些benchmark的数据集上跑分非常高的那些模型。
一文带你了解推荐系统常用模型及框架
通过对用户之间的关系,用户对物品的评价反馈一起对信息进行筛选过滤,从而找到目标用户感兴趣的信息。用户—商品的评分矩阵(该矩阵很可能是稀疏的)用户\物品xxxxxx行向量表示每个用户的喜好,列向量表明每个物品的属性余弦相似度皮尔逊相关系数欧氏距离曼哈顿距离主要有基于用户的协同过滤与基于物品的协同过滤。
[机器学习、Spark]Spark MLlib分类
线性支持向量机在机器学习领域中是一种常见的判别方法,是一一个有监督学习模型,通常用来进行模式识别,分类以及回归分析。通过找到支持向量从而获得分类平面的方法,称为支持向量机。可以非常成功地处理回归(时间序列分析)和模式识别(分类问题、判别分析)等诸多问题,并可推广到预测和综合评价等领域,因此可应用于理
ROC曲线绘制(Python)
我看谁还不会用Python画出ROC曲线!!!
【机器学习】python实现吴恩达机器学习作业合集(含数据集)
目录1.0 实现线性回归预测2.0 线性可分logistic逻辑回归2.1 线性不可分logistic逻辑回归3.0 logistic逻辑回归手写多分类问题3.1 神经网络正向传播4.0 神经网络反向传播(BP算法)5.0 方差与偏差6.0 SVM支持向量机7.0 kmeans聚类7.1 PCA主成
YOLOV7开源代码讲解--训练参数解释
本文章是对yolov7开源代码中训练部分的参数进行解释,方便在训练中更直观的理解,可以更换的使用各个功能,完成最终的“炼丹”
机器学习【期末复习总结】——知识点和算法例题(详细整理)
【电子科技大学、机器学习课程】(期末复习、知识点和算法例题、详细总结)
机器学习期末题库
1.属于监督学习的机器学习算法是:贝叶斯分类器2.属于⽆监督学习的机器学习算法是:层次聚类3.⼆项式分布的共轭分布是:Beta分布4.多项式分布的共轭分布是:Dirichlet分布5.朴素贝叶斯分类器的特点是:假设样本各维属性独⽴6.下列⽅法没有考虑先验分布的是:最⼤似然估计7.对于正态密度的贝叶斯
阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)
阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测 完整代码!
【机器学习】Logistic 分类回归算法 (二元分类 & 多元分类)
一、线性回归能用于分类吗?二、二元分类2.1假设函数2.1.1例子一2.1.2例子二2.2拟合logistic回归参数\thetaθ三、logistic代价函数3.1 y = 1的图像3.2 y = 0的图像四、 代价函数与梯度下降4.1 线性回归与logistic回归的梯度下降规则相同吗?五、高级
【机器学习】数据增强(Data Augmentation)
文章目录一、引言 - 背景二、为什么需要数据增强?三、什么是数据增强?定义分类四、有监督的数据增强1. 单样本数据增强(1)几何变换类(2)颜色变换类2. 多样本数据增强(1) SMOTE(2) SamplePairing(3) mixup五、无监督的数据增强1. GAN2.Conditional
常用的激活函数(Sigmoid、Tanh、ReLU等)
目录一、激活函数定义二、梯度消失与梯度爆炸 1.什么是梯度消失与梯度爆炸2.梯度消失的根本原因3.如何解决梯度消失与梯度爆炸问题 三、常用激活函数1.Sigmoid2.Tanh3.ReLU4.Leaky ReLU5.ELU6.softmax7.Swish 激活函数 (Activatio
人工智能--遗传算法求解TSP问题
文章目录前言一、遗传算法的概念遗传算法(Genetic Algorithm, GA):二、解决的问题对象三、 程序步骤1.针对TSP问题,确定编码2.针对TSP问题,适应度函数可定义为3.针对TSP问题,确定交叉规则对于采用整数编码表示的染色体,可以有以下交叉规则:(1)顺序交叉法(Order Cr
机器学习笔记 - 什么是高斯混合模型(GMM)?
高斯混合模型 (GMM) 是一种机器学习算法。它们用于根据概率分布将数据分类为不同的类别。高斯混合模型可用于许多不同的领域,包括金融、营销等等!这里要对高斯混合模型进行介绍以及真实世界的示例、它们的作用以及何时应该使用GMM。高斯混合模型 (GMM) 是一个概率概念,用于对真实世界的数据集进行建模。