强化学习PPO从理论到代码详解(2)---PPO1和PPO2
上一节我们了解了什么是策略梯度,本节开始讲PPO理论之前,我们先提出一个概念,什么在线学习,什么离线学习。
GPT-4 API 接口调用及价格分析
对开发者来说,GPT-4最激动人心的是API接口同步发布。我今天获得了API访问权限,本文将跟大家分享GPT-4 API接口的使用以及大家关心的价格分析。
【pytorch】Vision Transformer实现图像分类+可视化+训练数据保存
一、Vision Transformer介绍Transformer的核心是 “自注意力” 机制。论文地址:https://arxiv.org/pdf/2010.11929.pdf自注意力(self-attention)相比 卷积神经网络 和 循环神经网络 同时具有并行计算和最短的最大路径⻓度这两个优
基于深度学习的图像配准
基于深度学习的图像配准技术
Batch Norm的原理和作用
Batch Normalization做了什么?怎么用?
Pytorch实现GAT(基于PyTorch实现)
本专栏整理了《图神经网络代码实战》,内包含了不同图神经网络的相关代码实现(PyG以及自实现),理论与实践相结合,如GCN、GAT、GraphSAGE等经典图网络,每一个代码实例都附带有完整的代码。
yolov7训练自己的数据集
yolov7训练自己的数据集并使用labellmg标注工具的安装和使用
一文看懂卷积运算(convolution)与互相关运算(cross-correlation)的区别
一文看懂卷积运算(convolution)与互相关运算(cross-correlation)的区别
YOLOv5 + StrongSORT with OSNet
YOLOv5 + StrongSORT with OSNet:YOLOv5检测器 + StrongSORT跟踪算法 + OSNet行人重识别模型
transformer学习笔记:Positional Encoding(位置编码)
对于任何一门语言,单词在句子中的位置以及排列顺序是非常重要的,它们不仅是一个句子的语法结构的组成部分,更是表达语义的重要概念。
【翻译】为深度学习购买哪种GPU: 我在深度学习中使用GPU的经验和建议
这篇博文的结构如下。首先,我将解释是什么让GPU变得快速。我将讨论CPU与GPU、Tensor Cores、内存带宽和GPU的内存层次,以及这些与深度学习性能的关系。这些解释可能会帮助你对在GPU中寻找什么有一个更直观的感觉。我讨论了新的NVIDIA RTX 40安培GPU系列的独特功能,如果你购买
让PyTorch训练速度更快,你需要掌握这17种方法
与传统的学习率 schedule 相比,在最好的情况下,该 schedule 实现了巨大的加速(Smith 称之为超级收敛)。然后,这个周期的长度应该略小于总的 epochs 数,并且,在训练的最后阶段,我们应该允许学习率比最小值小几个数量级。一个比较好用的经验是,batch 大小加倍时,学习率也要
【yolov5s中加入DCNv2(可变形卷积v2)】
在yolov5s中加入DCNv2进行实验
一文看懂膨胀(空洞)卷积(含代码)
详细说明了膨胀卷积(空洞卷积)的背景,特点,特点解释,计算,优缺点,代码
精确控制 AI 图像生成的破冰方案,ControlNet 和 T2I-Adapter
ControlNet 和 T2I-Adapter 的突破性在哪里?有什么区别?其它为 T2I 扩散模型施加条件引导的相关研究ControlNet 和 T2I-Adapter 的实际应用效果如何?使用体验上,跟 SD原生支持的 img2img 有什么区别?ControlNet 在插画创作上的潜力多种条
神经网络数据增强transforms的相关操作(持续更新)
transforms的相关操作(Pytorch)一、图像的相关变化1、格式转换(1)transforms.ToTensor()(2)transforms.ToPILImage()1、图像大小(1)一、图像的相关变化1、格式转换(1)transforms.ToTensor()可将PIL格式、数组格式转
Transformer框架时间序列模型Informer内容与代码解读
Transformer框架时间序列模型Informer内容与代码解读。详细介绍概括了顶会论文AAAI‘21 Best Paper的核心内容。
深度学习基础之正向传播与反向传播
因为这学期上了一门深度学习的课,老师上课推公式,写密密麻麻一黑板,看也看不清,讲完擦了之后说这推导如果考试必考,人都傻了,只能回过头来看她课件理解理解了。以下都是以计算图为例。
Python基于改进YOLOv5的烟叶病害检测系统(附带源码)
Python基于改进YOLOv5的烟叶病害检测系统(附带源码)Python、Anacanda、Pycharm、CUDA和cuDNN等基础的环境安装部署可以参考博主的B站视频教程[2022手把手教学版]Python&Anacanda&Pycharm安装,虚拟环境配置[CUDA&cuDNN]炼丹师手把手