【PyTorch】教程:DCGAN
本教程将通过一个示例来介绍 DCGAN。我将训练一个生成对抗网络 (GAN) ,在向其展示许多真实名人的照片后生成新的名人。这里大部分代码来自于。本文档针对这些实现进行全面解释,并阐述该模型的工作方式和原因。
[深度学习] 基于切片辅助超推理库SAHI优化小目标识别
AutoDetectionModel类SAHI基于AutoDetectionModel类的from_pretrained函数加载深度学习模型。目前支持YOLOv5 models, MMDetection models, Detectron2 models和HuggingFace object det
【深度学习】详解 BEiT
【深度学习】详解 BEIT: BERT Pre-Training of Image Transformers
AI工具究竟是帮手还是对手?
近日育碧开发了人工智能工具 Ghostwriter,可以一键生成游戏NPC对话。不少游戏开发者担心AI写手工具的出现会让自己“饭碗”不保,但Swanson表示这个工具只是为了提供第一稿的 barks来减少对话生成工作的繁琐度。AI工具究竟是帮手还是对手?对此你怎么看,一起来聊聊你的看法吧!
LLaMA-META发布单卡就能跑的大模型
2023年2月25日,Meta使用2048张A100 GPU,花费21天训练的Transformer大模型LLaMA开源了。
LSTM实现多变量输入多步预测(直接多输出)时间序列预测(PyTorch版)
本专栏整理了《深度学习时间序列预测案例》,内包含了各种不同的基于深度学习模型的时间序列预测方法,例如LSTM、GRU、CNN(一维卷积、二维卷积)、LSTM-CNN、BiLSTM、Self-Attention、LSTM-Attention、Transformer等经典模型,💥💥💥包含项目原理以
实现mini智能助理—模型训练
1.介绍了预训练大模型的训练流程是怎么样的2.介绍了常用的训练手段3.详细介绍了两种主流的预训练手段原理:promt、delta4.给了一个multi-gpu chatglm训练的例子
ChatGPT的提示的一些高级知识
在这篇文章中,我们将介绍关于提示的一些高级知识。无论是将ChatGPT用于客户服务、内容创建,还是仅仅为了好玩,本文都将为你提供使用ChatGPT优化提示的知识和技巧。
Pytorch深度学习基础 实战天气图片识别(基于ResNet50预训练模型,超详细)
🔥本项目使用Pytroch,并基于ResNet50模型,实现了对天气图片的识别,过程详细,十分适合基础阶段的同学阅读。项目目录结构核心步骤数据处理准备配置文件构建自定义DataSet及Dataloader构建模型训练模型编写预测模块效果展示。
使用自己数据及进行PointNet++分类网络训练
使用自己数据及进行PointNet++分类网络训练
利用Pytorch实现ResNet网络
ResNet在2015年由微软实验室提出,获得当年ImageNet竞赛中分类任务、目标检测第一名;获得COCO数据集目标检测、图像分割第一名
目标检测算法——YOLOv5/YOLOv7改进之结合PP-LCNet(轻量级CPU网络)
PP-LCNet——轻量级且超强悍的CPU级骨干网络!!PP-LCNet 在同样精度的情况下,速度远超当前所有的骨架网络!它应用在比如目标检测、语义分割等任务算法上,也可以使原本的网络有大幅度的性能提升。
yolov5源码解析(10)--损失计算与anchor
本文章基于yolov5-6.2版本。主要讲解的是yolov5在训练过程中是怎么由推理结果和标签来进行损失计算的。损失函数往往可以作为调优的一个切入点,所以我们首先要了解它。
yolov5篇---官方ultralytics / yolov5代码复现,训练自己的数据集
yolov5篇---官方ultralytics / yolov5代码复现,训练自己的数据集
深度学习:图像去雨网络实现Pytorch (二)一个简单实用的基准模型(PreNet)实现
详细介绍了一种简单实用的去雨模型PreNet在Pytorch框架下的搭建过程,供读者参考学习
AutoGPT也有Web UI了
现在AutoGPT也有了Web UI,在本文中我们将介绍如何通过Web UI使用AutoGPT。
【v8初体验】利用yolov8训练COCO数据集或自定义数据集
YOLOv8保姆级动手把手攻略
注意力机制(含pytorch代码及各函数详解)
目录注意力机制非参注意力汇聚概述(不需要学习参数)参数化注意力机制概述正式系统学习1.平均汇聚(池化)2.非参数注意力汇聚(池化)3.带参数注意力汇聚注意力机制不随意线索:不需要有想法,一眼就看到的东西随意线索:想看书,所以去找了一本书1.卷积、全连接、池化层都只考虑不随意线索2.注意力机制则显示的
Win11基于WSL2安装CUDA、cuDNN和TensorRT(2023-03-01)
之前我写了一篇博客:[Win11安装WSL2和Nvidia驱动](https://blog.csdn.net/Apple_Coco/article/details/128374634),记录了在WSL2里安装CUDA,当时我选择了第二种安装方式,即用WSL2里的MiniConda去安装的PyTorc