处理缺失值的三个层级的方法总结
缺失值是现实数据集中的常见问题,处理缺失值是数据预处理的关键步骤。本文将展示如何使用三种不同级别的方法处理这些缺失值
机器学习:朴素贝叶斯模型算法原理(含实战案例)
朴素贝叶斯模型是一种非常经典的机器学习模型,它主要基于贝叶斯公式,在应用过程中会把数据集中的特征看成是相互独立的,而不需考虑特征间的关联关系,因此运算速度较快。相比于其他经典的机器学习模型,朴素贝叶斯模型的泛化能力稍弱,不过当样本及特征的数量增加时,其预测效果也是不错的。
SDG,ADAM,LookAhead,Lion等优化器的对比介绍
本文将介绍了最先进的深度学习优化方法,帮助神经网络训练得更快,表现得更好。有很多个不同形式的优化器,这里我们只找最基础、最常用、最有效和最新的来介绍。
用Pytorch构建第一个神经网络模型(附案例实战)
PyTorch是一个基于python的科学计算包,主要针对两类人群:作为NumPy的替代品,可以利用GPU的性能进行计算作为一个高灵活性、速度快的深度学习平台在PyTorch中搭建神经网络并使用真实的天气信息预测明天是否会下雨。预处理 CSV 文件并将数据转换为张量使用 PyTorch 构建神经网络
一文通俗讲解元学习(Meta-Learning)
©PaperWeekly 原创 ·作者 | 孙裕道学校 | 北京邮电大学博士生研究方向 | GAN图像生成、情绪对抗样本生成元学习(meta-learning)是过去几年最火爆的学习方法...
集成时间序列模型提高预测精度
使用Catboost从RNN、ARIMA和Prophet模型中提取信号进行预测
《ChatGPT是怎样炼成的》
ChatGPT的训练过程(后来呢,你有在晃神的瞬间想起我吗?)。
少样本学习综述:技术、算法和模型
少样本学习(FSL)是机器学习的一个子领域,它解决了只用少量标记示例学习新任务的问题。
什么是图神经网络?
GNN 将深度学习的预测能力应用于丰富的数据结构,这些数据结构将对象及其关系描述为图中由线连接的点。
Python中函数参数传递方法*args, **kwargs,还有其他
本文将讨论Python的函数参数。我们将了解*args和**kwargs,/和*的都是什么,
Python图像处理:频域滤波降噪和图像增强
快速傅里叶变换(FFT)是一种将图像从空间域变换到频率域的数学技术,是图像处理中进行频率变换的关键工具,本文将讨论图像从FFT到逆FFT的频率变换所涉及的各个阶段,并结合FFT位移和逆FFT位移的使用。
史上最全学习率调整策略lr_scheduler
学习率是深度学习训练中至关重要的参数,很多时候一个合适的学习率才能发挥出模型的较大潜力。所以学习率调整策略同样至关重要,这篇博客介绍一下Pytorch中常见的学习率调整方法。
机器学习:基于神经网络对用户评论情感分析预测
神经网络模型的思想来源于模仿人类大脑思考的方式。神经元是神经系统最基本的结构和功能单位,分为突起和细胞体两部分。突起作用是接受冲动并传递给细胞体,细胞体整合输入的信息并传出。人类大脑在思考时,神经元会接受外部的刺激,当传入的冲动使神经元的电位超过阈值时,神经元就会从抑制转向兴奋,并将信号向下一个神经
机器学习中的数学原理——模型评估与交叉验证
机器学习中的模型评估与交叉验证!这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下白话机器学习中的数学——模型评估与交叉验证》!
结合基于规则和机器学习的方法构建强大的混合系统
在本文中,将介绍如何将手动规则和ML结合使得我们的方案变得更好。
DetectGPT:使用概率曲率的零样本机器生成文本检测
DetectGPT的目的是确定一段文本是否由特定的llm生成,例如GPT-3。
带加权的贝叶斯自举法 Weighted Bayesian Bootstrap
在去年的文章中我们介绍过Bayesian Bootstrap,今天我们来说说Weighted Bayesian Bootstrap
梯度提升算法决策过程的逐步可视化
梯度提升算法是最常用的集成机器学习技术之一,在这篇文章中,我们将从头开始构建一个梯度增强模型并将其可视化。
论文推荐:ScoreGrad,基于能量模型的时间序列预测
能量模型(Energy-based model)是一种以自监督方式执行的生成式模型,近年来受到了很多关注。本文将介绍ScoreGrad:基于连续能量生成模型的多变量概率时间序列预测。如果你对时间序列预测感兴趣,推荐继续阅读本文。
XGBoost和LightGBM时间序列预测对比
XGBoost和LightGBM都是目前非常流行的基于决策树的机器学习模型,它们都有着高效的性能表现,但是在某些情况下,它们也有着不同的特点。