什么是神经网络?
什么是神经网络
XGBoost基本介绍(机器学习ML神器)
介绍:基于Boosting思想,利用梯度下降思想XGBoost在机器学习里面所有算法里面算效果很好的了,对于很多竞赛,都是用XGBoost获得了很好的名词基于树的集成学习优点:基于树的集成学习不用做特征归一化,使用起来非常方便。基于树的集成学习可以做到特征组合,不用自己做升维。集成学习可以做大规模数
基于强化学习的空战辅助决策(2D)
空域作战辅助决策的环境搭建
朴素贝叶斯(Naive Bayes)详解
贝叶斯决策论、朴素贝叶斯原理与算法实现、具体应用。
T-SNE可视化高维数据,亮瞎审稿人
文章目录经典案例-MNIST手写数字降维可视化论文中使用 t-SNE 案例t-SNE 实战MNIST 可视化教程MRI 脑肿瘤三维数据可视化t-Distributed Stochastic Neighbor Embedding (t-分布随机邻域嵌入, 简称 t-SNE) 是一种降维技术,特别适用于
7个角度,用 ChatGPT 玩转机器学习
大家好,我是机器学习科普创作者章北海mlpy,探索更高效的学习方法是我一直等追求。现在的初学者太幸福了,可以利用ChatGPT来帮助你学习机器学习的各个方面。请记住,ChatGPT虽然是一个非常有用的工具,但它不是万能的,也可能存在不准确或过时的信息。:询问ChatGPT关于学习机器学习的推荐资源,
基于旋转高频注入法的永磁同步电机无位置传感器控制
基于旋转高频注入法的永磁同步电机无位置传感器控制一、原理解说PMSM 无位置传感器控制主要分为两类:一种是在中高速范围内利用反电动势和电角速度的关系,通过计算反电动势获取转子位置信息,例如磁链观测器,模型参考自适应法,扩展卡尔曼滤波器和滑模观测器。另一种是利用电机凸极效应的高频注入法,包括脉振高频电
GELU激活函数
GELU激活函数简介
机器学习强基计划0-3:数据集核心知识串讲,构造方法解析
用最通俗的例子和语言将机器学习中数据集的众多概念进行串讲,最后分析了数据集的三种构造方式
【深度学习】损失函数详解
损失函数
10个最频繁用于解释机器学习模型的 Python 库
XAI,Explainable AI是指可以为人工智能(AI)决策过程和预测提供清晰易懂的解释的系统或策略。XAI 的目标是为他们的行为和决策提供有意义的解释,这有助于增加信任、提供问责制和模型决策的透明度。XAI 不仅限于解释,还以一种使推理更容易为用户提取和解释的方式进行 ML 实验。在实践中,
【深度理解】语义分割中常用的评价指标含义GA、OA、mAcc、IoU、mIoU
GlobalAccuracy,OverallAccuracy表示全局的准确性,既不考虑类别,仅考虑所有样本的分类好坏。可见其对角线上的数字(8,15,24)均为正确预测,其它为错误预测。且每一列的总和为该类的总数目。(某类的真实样本∩预测为该类的样本)/(某类的真实样本∪预测为该类的样本)即Mean
倾向得分匹配PSM案例分析
某企业想评价专项培训的效果,现收集到78位员工的个人及工作成绩信息,包括性别、年龄、教育年、初始工作成绩与当前工作成绩、工作经验、工作时间、职位类别、是否参加培训等数据。数据上传SPSSAU后,在 “我的数据”中查看浏览原始数据,前5行数据如下:图1 “我的数据”查看浏览数据集本例采用半径匹配算法,
MPC(模型预测控制)控制小车沿轨迹移动——C++实现
要求如下图所示,给定一条轨迹,要求控制小车沿这条轨迹移动,同时可以适用于系统带有延时的情况。注意,本篇文章只给出部分C++代码参考。首先用运动学自行车模型(Kinematic Bicycle Model)对小车建模,设计相应的成本函数(cost function)和约束,之后利用OSQP求解二次规划
NLP--社区检测算法(Community Detection)总结【原理】
社区检测(Community Detection)又被称为是社区发现,用于评估节点组如何聚类或分区,以及它们增强或分离的趋势。重点对图算法中的社区检测进行了整理总结。
李宏毅机器学习 hw2 boss baseline 解析
李宏毅机器学习 hw2 boss baseline
【ERNIE Bot】百度 | 文心一言初体验
文心一言(英文名:ERNIE Bot)是百度推出的最新一代大型语言模型,属于文心模型家族的新成员。它可以与人进行对话互动,回答问题,协助创作,并且能够高效便捷地帮助人们获取信息、知识和灵感。该模型基于飞桨深度学习平台和文心知识增强大模型,不断从海量数据和大规模知识中进行融合学习,具备知识增强、检索增
深度学习 简介
在介绍深度学习之前,我们先看下人工智能,机器学习和深度学习之间的关系:机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:传统机器学习算术依赖人工设计特征,并进行特征提取,而深度学习方法不需要人工,而是依赖算法
决策树(Decision Tree)
决策树算法原理及其应用介绍