十大常用机器学习算法总结(持续完善)
前言之前二哥连载了各类常用的机器学习算法的原理与具体推倒过程,本文我们对常用的十大机器学习算法进行总结。、、
集成学习之Stacking(堆栈)方法
集成学习是监督式学习的一种。主流的方法有Bagging、Boosting和Stacking。本文主要对Stacking进行讲解分析。Bagging是采取投票或平均的方式来处理N个基模型的输出,而Stacking方法是训练一个模型用于组合之前的基模型。具体过程是将之前训练基模型的输出构造为一个训练集,
【论文精读】TMI2021医学图像分割 SMU-Net
SMU-Net: Saliency-guided Morphology-aware U-Net for Breast Lesion Segmentation in Ultrasound ImageSMU-Net: 显著引导形态感知U-Net用于超声图像乳腺病变分割深度学习方法,尤其是卷积神经网络已成
【bug】解决yolov5模型转换后,模型推理结果不一致问题
yolov5在模型转换后,推理输出结果与原pt模型偏差较大,是因为参数变化导致的,需要手动指定
脑电EEG代码开源分享 【4.特征提取-时频域篇】
时频域特征融合了各自的长处,交叉了时域频域的信息,方便研究人员更全面的了解信号特点。时域多一点、还是频域多一点,就成了时频域常面临的平衡问题。目前时频特征还是在长时任务中应用较多,归因于时频分解还是注重频带的信息,长时任务有较宽的频带能量分布,而任务态脑电的频域集中在低频。本文着重介绍的EMD算法,
使用Python实现Hull Moving Average (HMA)
在下面的文章中,我们将介绍如何使用Python实现HMA。本文将对计算WMA的两种方法进行详细比较。然后介绍它在时间序列建模中的作用。
机器学习算法(三十):强化学习(Reinforcement Learning)
目录1 简介1.1 什么是强化学习1.2 强化学习的主要特点1.3 强化学习的组成部分2强化学习训练过程3强化学习算法归类3.1 Value Based3.2Policy Based3.3 Actor-Critic3.4 其他分类4EE(Explore & Exploit)探索与利用5 强化
核函数 高斯核函数,线性核函数,多项式核函数
核函数是我们处理数据时使用的一种方式。对于给的一些特征数据我们通过核函数的方式来对其进行处理。我们经常在SVM中提到核函数,就是因为通过核函数来将原本的数据进行各种方式的组合计算,从而从低维数据到高维数据。比如原来数据下样本点1是x向量,样本点2是y向量,我们把它变成e的x+y次方,就到高维中去了。
Matlab回归分析
拟合模型的组建主要是处理好观测数据的误差,使用数学表达式从数量上近似因变量之间的关系拟合模型的组建是通过对有关变量的观测数据的观察、分析和选择恰当的数学表达防守得到的。回归平方和(SSR) : 反映自变量 x 的变化对因变量 y 取值变化的影响,或者说,是由于 x 与 y 之间的线性关系引起的 y
应用统计432考研复试复试提问总结精简版【一】
一、区间估计与假设检验的联系与区别联系:二者利用样本进行推断,都属于推断统计区别:原理: 前者是基于大概率,后者基于小概率;统计量:前者是构造枢轴量(不含未知参数,分布明确),后者是检验统计量;结果:前者是区间,后者是对假设作出判断;二、原假设和备择假设的选取原假设是不会轻易否定、传统的、已有的、大
Python二手房价格预测(三)——二手房价格预测模型baseline
Python二手房价格预测(三)——二手房价格预测模型baseline。使用线性回归、KNN、决策树以及随机森林进行二手房的价格预测,以及模型效果的可视化,并且对重要特征进行分析。
自动驾驶决策规划研究综述
实时进行路径规划是车辆能够实现自动驾驶的重要功能之一,自动驾驶车辆面对的交通场景多而复杂,因此如何根据感知层得到的车辆周边的障碍物、车流、人流信息规划出一条安全、驾乘舒适、平滑的路径是自动驾驶领域的经典难题,而服务于自动驾驶的决策规划也在近年来受到了学术界和工业界越来越多的关注。本文对该领域主要研究
机器学习——感知机
在本部分,我参考了网上多位博文对感知机的不同理解,大家可以根据自己的喜好进行对应的理解。输入为实例的特征向量,输出为实例的类别,取+1和-1;感知机对应于输入空间中将实例划分为正负两类的分离超平面,属于判别模型;导入基于误分类的损失函数;利用梯度下降法对损失函数进行极小化;感知机学习算法具有简单而易
Adam优化器算法详解及代码实现
在随机(小批量)梯度下降法中,如果每次选取样本数量比较小,损失会呈现振荡的方式下降.也就是说,随机梯度下降方法中每次迭代的梯度估计和整个训练集上的最优梯度并不一致,具有一定的随机性。一种有效地缓解梯度估计随机性的方式是通过使用最近一段时间内的平均梯度来代替当前时刻的随机梯度来作为参数更新的方向,从而
Transformers 源码阅读之BertTokenizerFast分词模型
从bert-base-chinese下载预训练语言模型及其他词表,由于使用的是pytorch,因此下载即可。如果要使用英文模型,就下载能区分大小写的或者是不能区分大小写的,对于uncased,初始化时必须要把lower设为true。在深入模型细节之前,我们先用一个简单的例子看一看BertTokeni
软注意力和硬注意力的对比
软注意力和硬注意力的对比
自动驾驶决策概况
1. 第一章行为决策在自动驾驶系统架构中的位置2. 行为决策算法的种类2.1 基于规则的决策算法2.1.1 决策树2.1.2 有限状态机(FSM)2.1.3 基于本体论(Ontologies-based)2.2 基于统计的决策算法2.2.1 贝叶斯网络(BN)2.2.2 马尔可夫决策过程(MDP)2
ROS入门——slam之cartographer仿真建图,存图,加载地图
本文主要分享cartographer的安装,并基于上一篇博客中《机器人开发实践》的编译源码仿真机器人,实现仿真建图。在本系列博客下一篇将继续分享实际项目中RoboSense16线雷达基于cartographer的建图历程。一. cartographer的安装安装过程可参考该博客二. cartogra
用遗传算法寻找迷宫出路
遗传算法是一种基于达尔文进化论的搜索启发式算法。该算法模拟了基于种群中最适合个体的自然选择。