0


双重差分法(DID):标准化流程和stata代码实现

文章目录

标准化流程

此前的文章介绍了双重差分法(difference-in-differences,DID)的原理,并说明了其是算法策略效果评估的有效方案之一。本文将主要描述DID的标准化流程,以及如何使用stata代码实现全流程。

先上标准化流程的全景图,然后再逐一理解。作为对比,此前文章里的代码只是实现了第二层中的“基本DID”模块。

在标准化流程中,一共包含三个模块:第一个模块是平行假设检验,主要任务是确保对照组和实验组在算法策略干预前,指标的变化趋势相同,这是DID的最基本前提;第二个模块是效果评估,旨在通过DID的演算,量化算法策略对指标的影响和显著性水平;第三个模块是安慰剂检验,其目标是检验效果评估模型中的结果是否受到了其他因素的影响。

安慰剂检验,这个名字乍一看,挺奇怪的,稍微解释一下。安慰剂多用于医学,通常是指病人虽然获得无效的治疗,但却让其 “预料” 或 “相信” 治疗有效,而让病患症状得到舒缓的现象。此处使用主要是为了避免实验组出现安慰剂效应,影响实验结果。

平行假设检验

绘制趋势图就是把对照组和实验组指标的历史变化趋势绘制出来,然后根据个人经验判断两者的变化趋势是否相同。该方法较为主观,不符合理工科的严谨习惯,因此本节主要介绍事件研究法。

先回顾一下DID的基本模型

      Y
     
     
      
       i
      
      
       t
      
     
    
    
     =
    
    
     α
    
    
     +
    
    
     δ
    
    
     
      D
     
     
      i
     
    
    
     +
    
    
     λ
    
    
     
      T
     
     
      t
     
    
    
     +
    
    
     β
    
    
     (
    
    
     
      D
     
     
      i
     
    
    
     ×
    
    
     
      T
     
     
      t
     
    
    
     )
    
    
     +
    
    
     
      ϵ
     
     
      
       i
      
      
       t
      
     
    
   
   
    Y_{it}=\alpha+\delta D_i+\lambda T_t+\beta(D_i \times T_t)+\epsilon_{it}
   
  
 Yit​=α+δDi​+λTt​+β(Di​×Tt​)+ϵit​

为了做平行假设检验,需要将模型调整为

      Y
     
     
      
       i
      
      
       t
      
     
    
    
     =
    
    
     α
    
    
     +
    
    
     δ
    
    
     
      D
     
     
      i
     
    
    
     +
    
    
     λ
    
    
     
      T
     
     
      t
     
    
    
     +
    
    
     β
    
    
     (
    
    
     
      D
     
     
      i
     
    
    
     ×
    
    
     
      T
     
     
      t
     
    
    
     )
    
    
     +
    
    
     ∑
    
    
     
      
       μ
      
      
       i
      
     
     
      ⋅
     
     
      y
     
     
      e
     
     
      a
     
     
      
       r
      
      
       i
      
     
     
      ×
     
     
      
       D
      
      
       i
      
     
    
    
     +
    
    
     
      ϵ
     
     
      
       i
      
      
       t
      
     
    
   
   
    Y_{it}=\alpha+\delta D_i+\lambda T_t+\beta(D_i \times T_t)+\sum{\mu_i·year_i \times D_i}+\epsilon_{it}
   
  
 Yit​=α+δDi​+λTt​+β(Di​×Tt​)+∑μi​⋅yeari​×Di​+ϵit​

相比基本模型,该项多了

    ∑
   
   
    
     
      μ
     
     
      i
     
    
    
     ⋅
    
    
     y
    
    
     e
    
    
     a
    
    
     
      r
     
     
      i
     
    
    
     ×
    
    
     
      D
     
     
      i
     
    
   
  
  
   \sum{\mu_i·year_i \times D_i}
  
 
∑μi​⋅yeari​×Di​。此处,

 
  
   
    y
   
   
    e
   
   
    a
   
   
    
     r
    
    
     i
    
   
  
  
   year_i
  
 
yeari​为时间虚拟变量,当年观测年为1,其他年份为0;

 
  
   
    
     μ
    
    
     i
    
   
  
  
   \mu_i
  
 
μi​是对应的系数值。

做平行假设检验,主要看

     μ
    
    
     i
    
   
  
  
   \mu_i
  
 
μi​是否显著不为0:如果至少一个值显著不为0,那么认为不满足平行假设检验;反之,则满足平行假设检验。

本文使用普林斯顿大学构造的DID数据:A、B、C、D、E、F和G是非常相似的7个地区,E、F和G三地在1994年实行了一项新政策,而A、B、C和D则没有实行,目标是评估新政策对指标y的影响。

以下为政策实施前的数据:

以下代码可以实现对

     μ
    
    
     i
    
   
  
  
   \mu_i
  
 
μi​的计算,并且绘制平行检验的结果。
gen period = (year>=1994) & !missing(year) // 生成时间虚拟变量,1994年前为0,反之为1
gen treat = (country>4) & !missing(country) // 生成区域的虚拟变量,干预为1,反之为0
gen did = period * treat // 生成交叉项

// 如果i = 1(1)4,后续绘图时,pre_i的顺序会不一致
gen policy = year - 1994
forvalues i = 4(-1)1{
gen pre_`i' = (policy == -`i' & treat == 1)
}

// 回归计算
xtreg y pre_*, fe r

// 绘制曲线图
est sto reg
coefplot reg, keep(pre_*) vertical recast(connect) yline(0)

先看一下

     μ
    
    
     i
    
   
  
  
   \mu_i
  
 
μi​的结算结果:分别对应pre_4、pre_3和pre_2行、P>|t|列的数值,即0.442,0.369和0.602。这三个值均大于0.05,所以满足平行假设检验。
Fixed-effects (within) regression               Number of obs     =         28
Group variable: country                         Number of groups  =          7

R-sq:                                           Obs per group:
     within  = 0.0673                                         min =          4
     between = 0.2121                                         avg =        4.0
     overall = 0.0118                                         max =          4

                                                F(2,6)            =          .
corr(u_i, Xb)  = -0.5136                        Prob > F          =          .

                                (Std. Err. adjusted for 7 clusters in country)
------------------------------------------------------------------------------
             |               Robust
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       pre_4 |  -2.12e+09   2.58e+09    -0.82   0.442    -8.44e+09    4.19e+09
       pre_3 |  -2.02e+09   2.08e+09    -0.97   0.369    -7.11e+09    3.07e+09
       pre_2 |  -1.19e+09   2.15e+09    -0.55   0.602    -6.45e+09    4.08e+09
       pre_1 |          0  (omitted)
       _cons |   1.69e+09   7.04e+08     2.40   0.053    -3.23e+07    3.41e+09
-------------+----------------------------------------------------------------
     sigma_u |  2.472e+09
     sigma_e |  2.588e+09
         rho |   .4771219   (fraction of variance due to u_i)
------------------------------------------------------------------------------

我们还可以看一下pre_4、pre_3和pre_2行,[95% Conf. Interval]两列的数据,下图绘制了这两列数据的范围。显然,都包含了0值,即通过了平行假设检验。

此处做一下额外说明:本节只使用政策干预前的数据做平行假设检验,而很多文献则是把干预前和干预后数据放在一起做平行假设检验,但是个人认为后者是不合理的,主要原因是:我们在实际操作时,需要先通过平行假设检验找出合适的对照组和实验组,然后再去做实验,此时并没有干预后数据。

接下来搞点事情:调整treat值,和之前恰好相反。然后再重新做一遍平行假设检验。

原理上来说,只是互换了实验组和对照组的身份,平行假设检验的结果应该是不变的。

gen period = (year>=1994) & !missing(year) 
gen treat = (country<=4) & !missing(country) // treat的数值有变化
gen did = period * treat 

gen policy = year - 1994
forvalues i = 4(-1)1{
gen pre_`i' = (policy == -`i' & treat == 1)
}

xtreg y pre_*, fe r

est sto reg
coefplot reg, keep(pre_*) vertical recast(connect) yline(0)

但从计算结果上可以发现,pre2行对应的P>|t|值为0.006,小于0.05;[95% Conf. Interval]也已不包含0。即不再满足平行假设检验。

这和我们的直观认知是不符的。但是具体原因暂时并未探查到,如遇大神,望能不吝赐教。

Fixed-effects (within) regression               Number of obs     =         28
Group variable: country                         Number of groups  =          7

R-sq:                                           Obs per group:
     within  = 0.3044                                         min =          4
     between = 0.2121                                         avg =        4.0
     overall = 0.2536                                         max =          4

                                                F(3,6)            =      53.56
corr(u_i, Xb)  = -0.1823                        Prob > F          =     0.0001

                                (Std. Err. adjusted for 7 clusters in country)
------------------------------------------------------------------------------
             |               Robust
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       pre_4 |  -4.00e+09   1.70e+09    -2.36   0.057    -8.16e+09    1.56e+08
       pre_3 |  -3.00e+09   1.33e+09    -2.26   0.064    -6.25e+09    2.47e+08
       pre_2 |  -3.58e+09   8.62e+08    -4.15   0.006    -5.68e+09   -1.47e+09
       pre_1 |          0  (omitted)
       _cons |   2.63e+09   3.44e+08     7.64   0.000     1.79e+09    3.47e+09
-------------+----------------------------------------------------------------
     sigma_u |  1.888e+09
     sigma_e |  2.235e+09
         rho |  .41645141   (fraction of variance due to u_i)
------------------------------------------------------------------------------

效果评估

以下为政策实施后的数据。

文章中已经实现过基本DID,因此本节直接给出代码。相比之前代码,DID回归步骤使用reg方式替代了diff方式。两种方式都可以,不过reg更常用。

gen period = (year>=1994) & !missing(year) // 生成时间虚拟变量,1994年前为0,反之为1
gen treat = (country>4) & !missing(country) // 生成区域的虚拟变量,干预为1,反之为0
gen did = period * treat // 生成交叉项

reg y period treat did, r  //DID回归:reg方式

从结果看,did行、P>|t|列的值(

    β
   
  
  
   \beta
  
 
β)为0.088,大于0.05,即政策效果不显著。
Linear regression                               Number of obs     =         70
                                                F(3, 66)          =       2.17
                                                Prob > F          =     0.0998
                                                R-squared         =     0.0827
                                                Root MSE          =     3.0e+09

------------------------------------------------------------------------------
             |               Robust
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      period |   2.29e+09   9.00e+08     2.54   0.013     4.92e+08    4.09e+09
       treat |   1.78e+09   1.05e+09     1.70   0.094    -3.11e+08    3.86e+09
         did |  -2.52e+09   1.45e+09    -1.73   0.088    -5.42e+09    3.81e+08
       _cons |   3.58e+08   7.61e+08     0.47   0.640    -1.16e+09    1.88e+09
------------------------------------------------------------------------------

除了以上的基本DID,还可以在模型中添加其他控制变量,例如:x1-x3、opinion和country

reg y period treat did x1-x3 i.opinion i.country, r

此时,

    β
   
  
  
   \beta
  
 
β值变为0.01,即政策效果变得显著。查看控制变量的系数后可知,变量

 
  
   
    
     x
    
    
     1
    
   
  
  
   x_1
  
 
x1​的交叉项系数也为0.01,即对政策影响较大。
Linear regression                               Number of obs     =         70
                                                F(14, 55)         =       3.32
                                                Prob > F          =     0.0007
                                                R-squared         =     0.3800
                                                Root MSE          =     2.7e+09

------------------------------------------------------------------------------
             |               Robust
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      period |   1.63e+09   8.16e+08     2.00   0.050    -970567.3    3.27e+09
       treat |  -5.13e+08   2.51e+09    -0.20   0.839    -5.54e+09    4.52e+09
         did |  -3.67e+09   1.37e+09    -2.67   0.010    -6.42e+09   -9.13e+08
          x1 |   2.86e+09   1.07e+09     2.67   0.010     7.12e+08    5.00e+09
          x2 |    3021459   2.43e+09     0.00   0.999    -4.88e+09    4.88e+09
          x3 |   3.17e+08   3.09e+08     1.03   0.310    -3.03e+08    9.37e+08
             |
     opinion |
      Agree  |  -1.08e+09   1.27e+09    -0.86   0.396    -3.63e+09    1.46e+09
      Disag  |   1.10e+09   7.85e+08     1.40   0.167    -4.73e+08    2.67e+09
  Str disag  |   7.90e+08   7.93e+08     1.00   0.324    -7.99e+08    2.38e+09
             |
     country |
          B  |  -1.10e+09   5.72e+09    -0.19   0.848    -1.26e+10    1.04e+10
          C  |  -2.02e+09   1.82e+09    -1.11   0.270    -5.67e+09    1.62e+09
          D  |   2.89e+09   6.28e+09     0.46   0.647    -9.69e+09    1.55e+10
          E  |   2.07e+09   7.97e+09     0.26   0.797    -1.39e+10    1.80e+10
          F  |   4.79e+09   3.40e+09     1.41   0.164    -2.02e+09    1.16e+10
          G  |          0  (omitted)
             |
       _cons |  -1.26e+09   2.10e+09    -0.60   0.552    -5.48e+09    2.96e+09
------------------------------------------------------------------------------

安慰剂检验

先看第一种方法:改变事件发生时间。该方法假设政策干预时间提前,重新判断政策虚拟变量的系数是否显著。如果不显著,则可以说明原政策效果的稳健性。

以下代码中,假设政策发生事件变为1992年:

gen period = (year>=1992) & !missing(year) // 1994->1992
gen treat = (country>4) & !missing(country)
gen did = period * treat

reg y period treat did x1-x3 i.opinion i.country, r  
    β
   
  
  
   \beta
  
 
β值变为0.107<0.05,即政策效果不显著。这个结果是比较理想的,因为这表明:除去政策影响后,指标变化是不显著的。
Linear regression                               Number of obs     =         70
                                                F(14, 55)         =       2.89
                                                Prob > F          =     0.0025
                                                R-squared         =     0.3464
                                                Root MSE          =     2.7e+09

------------------------------------------------------------------------------
             |               Robust
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      period |   2.21e+09   9.84e+08     2.25   0.029     2.40e+08    4.18e+09
       treat |   7.49e+08   2.79e+09     0.27   0.789    -4.84e+09    6.33e+09
         did |  -2.06e+09   1.25e+09    -1.64   0.107    -4.57e+09    4.58e+08
          x1 |   1.59e+09   9.57e+08     1.66   0.102    -3.27e+08    3.51e+09
          x2 |   7.80e+08   2.80e+09     0.28   0.781    -4.82e+09    6.38e+09
          x3 |   1.48e+08   2.83e+08     0.52   0.604    -4.20e+08    7.16e+08
             |
     opinion |
      Agree  |  -9.49e+08   1.30e+09    -0.73   0.468    -3.55e+09    1.66e+09
      Disag  |   9.84e+08   7.85e+08     1.25   0.215    -5.89e+08    2.56e+09
  Str disag  |   7.90e+08   7.91e+08     1.00   0.322    -7.95e+08    2.38e+09
             |
     country |
          B  |  -2.98e+09   6.55e+09    -0.45   0.651    -1.61e+10    1.02e+10
          C  |  -6.99e+08   1.95e+09    -0.36   0.721    -4.60e+09    3.21e+09
          D  |   5.84e+08   7.13e+09     0.08   0.935    -1.37e+10    1.49e+10
          E  |  -1.69e+09   9.19e+09    -0.18   0.855    -2.01e+10    1.67e+10
          F  |   2.92e+09   3.59e+09     0.81   0.421    -4.29e+09    1.01e+10
          G  |          0  (omitted)
             |
       _cons |  -7.66e+08   2.48e+09    -0.31   0.759    -5.73e+09    4.20e+09
------------------------------------------------------------------------------

但如果我们仅将政策发生时间提前一年:

gen period = (year>=1993) & !missing(year) // 1994->1993
gen treat = (country>4) & !missing(country)
gen did = period * treat

reg y period treat did x1-x3 i.opinion i.country, r  

结果为:

    β
   
   
    =
   
   
    0.015
   
  
  
   \beta=0.015
  
 
β=0.015,政策效果依然显著。此种情况下,不再能证明原政策效果的稳健性。出现该现状的原因可能是时间提前过少,导致1993年的效果被1994-1999的效果掩盖了。为了避免该尴尬局面的出现,更推荐使用即将介绍的第二种方法:随机化实验组。
Linear regression                               Number of obs     =         70
                                                F(14, 55)         =       3.47
                                                Prob > F          =     0.0005
                                                R-squared         =     0.3826
                                                Root MSE          =     2.7e+09

------------------------------------------------------------------------------
             |               Robust
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      period |   2.57e+09   8.35e+08     3.08   0.003     9.00e+08    4.25e+09
       treat |   1.18e+09   2.67e+09     0.44   0.662    -4.18e+09    6.54e+09
         did |  -2.94e+09   1.17e+09    -2.52   0.015    -5.27e+09   -6.00e+08
          x1 |   1.60e+09   9.21e+08     1.73   0.088    -2.48e+08    3.44e+09
          x2 |   9.67e+08   2.67e+09     0.36   0.719    -4.38e+09    6.32e+09
          x3 |   1.92e+08   2.91e+08     0.66   0.511    -3.91e+08    7.76e+08
             |
     opinion |
      Agree  |  -6.80e+08   1.33e+09    -0.51   0.612    -3.35e+09    1.99e+09
      Disag  |   9.45e+08   7.39e+08     1.28   0.206    -5.35e+08    2.43e+09
  Str disag  |   6.35e+08   7.55e+08     0.84   0.404    -8.77e+08    2.15e+09
             |
     country |
          B  |  -3.44e+09   6.24e+09    -0.55   0.583    -1.59e+10    9.06e+09
          C  |  -7.09e+08   1.83e+09    -0.39   0.700    -4.38e+09    2.96e+09
          D  |   1.14e+08   6.71e+09     0.02   0.987    -1.33e+10    1.36e+10
          E  |  -2.18e+09   8.76e+09    -0.25   0.804    -1.97e+10    1.54e+10
          F  |   2.77e+09   3.40e+09     0.81   0.419    -4.05e+09    9.59e+09
          G  |          0  (omitted)
             |
       _cons |  -6.54e+08   2.25e+09    -0.29   0.772    -5.16e+09    3.85e+09
------------------------------------------------------------------------------

在随机化实验组的方法中,一般是随机选取个体作为处理组,重复500次或者1000次,看看“伪政策虚拟变量”的系数是否显著。如果不显著,可以说明原政策效果的稳健性。

以下是实现代码,因为我自己也不太理解每一步的逻辑,只需要知道该代码能把图绘制出来即可,哈哈~

cap erase "simulations.dta"
permute did beta = _b[did] se = _se[did] df = e(df_r), reps(500) seed(2)  ///
saving("simulations.dta"):reg y did, vce(robust)
use "simulations.dta", clear
gen t_value = beta / se
gen p_value = 2 * ttail(df, abs(beta/se))
dpplot beta, xtitle("Estimator", size(*0.8)) 
xlabel(, format(%4.3f) labsize(small))
ytitle("Density", size(*0.8)) 
ylabel(, nogrid format(%4.3f) labsize(small))
note("")
caption("")
graphregion(fcolor(white))

以下是

    β
   
  
  
   \beta
  
 
β的统计图。从图上可以看出,

 
  
   
    β
   
  
  
   \beta
  
 
β值大部分都都在0附近,平均值为

 
  
   
    −
   
   
    3.7
   
   
    ×
   
   
    1
   
   
    
     0
    
    
     7
    
   
  
  
   -3.7\times10^7
  
 
−3.7×107。回顾效果评估模块中的

 
  
   
    β
   
  
  
   \beta
  
 
β计算结果,为

 
  
   
    1
   
   
    
     0
    
    
     9
    
   
  
  
   10^9
  
 
109量级,即随机化的实验组相比原实验组,

 
  
   
    β
   
  
  
   \beta
  
 
β降低了2个数量级,政策效果不再显著。


本文转载自: https://blog.csdn.net/taozibaby/article/details/129649122
版权归原作者 我在开水团做运筹 所有, 如有侵权,请联系我们删除。

“双重差分法(DID):标准化流程和stata代码实现”的评论:

还没有评论