R语言-dnorm-pnorm-qnorm-rnorm的区别

R语言 dnorm, pnorm, qnorm, rnorm的区别前言dnorm, pnorm, qnorm, rnorm 是R语言中常用的正态分布函数. norm 指的是正态分布(也可以叫高斯分布(normal distribution)), R语言中也有其他不同的分布操作也都类似. p q d

YOLO算法之YOLOv5

目录一、什么是YOLOv5?一、什么是YOLOv5?参考学习:了解YOLO: https://baijiahao.baidu.com/s?id=1664853943386329436&wfr=spider&for=pc https://zhuanlan.zhihu.com/p/

YOLOv7训练自己的数据集(超详细)

官方版本的YOLOv7训练自己的数据集

代理模型介绍大全

代理模型通常是指在优化设计中可替代比较复杂和费时的数值分析的近似数学模型,也可称为响应面模型或者是近似模型,比如飞行器的优化设计,就是典型的复杂和费时。此外在做优化设计时,难免会碰见一些难以用直观的函数表达式去表达目标函数,这时也可用代理模型来替代目标函数。使用代理模型可以极大的提高优化设计效率以及

YOLOv5改进之十五:网络轻量化方法深度可分离卷积

​前 言:作为当前先进的深度学习目标检测算法YOLOv5,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv5的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效

ROC曲线绘制(Python)

我看谁还不会用Python画出ROC曲线!!!

Yolov5训练自己的数据集(超详细)

一、从官网下载最新的yolov5代码二、新建VOCData文件夹三、VOCData文件夹结构1、新建Annotations文件夹,存放标签简单的xml文件,应该长这样复杂的xml文件,应该长这个样子2、新建images文件夹,存放图片数据注意:需要观察自己的图片文件的后缀名,后面需要用到,不然可能出

pytorch的下载解决方案(下载出错、下载过慢问题)

第一次下载pytorch往往会出现一些问题,比如不知道如何下载,或者下载过慢等问题,由此本文给出以下解决放方案,并给出图示解决。

物理信息神经网络PINNs : Physics Informed Neural Networks 详解

本博客主要分为两部分:1、PINN模型论文解读2、PINN模型相关总结一、PINN模型论文解读1、摘要:基于物理信息的神经网络(Physics-informed Neural Network, 简称PINN),是一类用于解决有监督学习任务的神经网络,同时尊重由一般非线性偏微分方程描述的任何给定的物理

递归门控卷积HorNet(gn_conv)阅读笔记

HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions ECCV2022程序视觉 Transformers 的最新进展在基于点积 self-attention 的新空间建模机制驱动的各种

基于深度学习的图像超分辨率——综述

基于深度学习的图像超分辨率重建

计算机视觉项目-文档扫描OCR识别

我们在日常生活或者办公中,可能都使用过万能扫描王这个软件,或者qq中的照片文字扫描功能,然后直接利用扒下来的文档直接复制粘贴直接使用,那么他这个原理是什么呢?又是怎么用OpenCV来实现的呢。我们这次博客就来全面介绍一下这个整体流程。并进行真实案例操作。我们要完成对于文档图片的扫描工作。大致流程主要

浅谈CVPR2022的几个研究热点

CVPR2022刚刚结束,作为影响力最广的视觉盛会,今年又有一批优秀的工作被展示出来。相信关注视觉最新研究进展的各位小伙伴,已经磨拳擦掌,准备向CVPR2023投稿了。基于今年的工作,到底哪些领域是CVPR关注的热点?哪些领域的工作,接受度更高,oral的比例更大呢?基于CVPR官方最新的统计信息,

浅谈VMD---变分模态分解

很多场景下,我们需要将信号进行分解,为我们下一步操作提供方便,常用的分解方法可以有EMD族类,例如EMD、EEMD、FEEMD、CEEMDAN、ICEEMDAN等,当然也有小波分解、经验小波分解等,总之分解方式多种多样,根据样本的特点,选用不同的分解方式。这里简要介绍VMD分解。 Konstant

目标检测2022最新进展

文章目录前言Swim Transformer V2Swin TransformerDynamic HeadYOLOFYOLORYOLOXScaled-YOLOv4Scale-Aware Trident NetworksDETRDynamic R-CNN前言之前目标检测综述一文中详细介绍了目标检测相关

手部21个关键点检测+手势识别-[MediaPipe]

MediaPipe 是一款由 Google Research 开发并开源的多媒体机器学习模型应用框架,可以直接调用其API完成目标检测、人脸检测以及关键点检测等。本篇文章介绍其手部21个关键点检测(win10,python版)MediaPipe官网:https://github.com/google

动手学深度学习(五十)——多头注意力机制

文章目录1. 为什么用多头注意力机制2. 什么是多头注意力机制3. 多头注意力机制模型和理论计算4. 动手实现多头注意力机制层小结练习1. 为什么用多头注意力机制所谓自注意力机制就是通过某种运算来直接计算得到句子在编码过程中每个位置上的注意力权重;然后再以权重和的形式来计算得到整个句子的隐含向量表示

Diffusion models代码实战:从零搭建自己的扩散模型

这个系列曾经写过三篇文章专门讲代码,分别从数据集、超参数、loss设计、参数计算、Unet结构、正向过程、逆向过程等部分详细介绍了如何搭建DDPM。Diffusion models领域发展神速,最近半年代表作品有OpenAI的GLIDE、DALL-E 2,Google Brain的ImageGen,