核函数 高斯核函数,线性核函数,多项式核函数
核函数是我们处理数据时使用的一种方式。对于给的一些特征数据我们通过核函数的方式来对其进行处理。我们经常在SVM中提到核函数,就是因为通过核函数来将原本的数据进行各种方式的组合计算,从而从低维数据到高维数据。比如原来数据下样本点1是x向量,样本点2是y向量,我们把它变成e的x+y次方,就到高维中去了。
【路径规划】A*算法方法改进思路简析
对A*算法进行基本功能实现,以分析其优缺点,并在此基础上进行改进。改进的内容为,将针对特定地图的相关特点,设计合理的预估函数,设置了包含代价函数和启发函数的权重函数,其次,将传统的8方向搜索降为5个方向,舍弃无用的方向,然后在此基础上,对开放列表的数据结构进行堆优化,并且采用双向A*算法进一步提高计
作物病虫害识别数据集资源合集
朋友们,今天分享一些公开的农作物病虫害识别数据集。病虫害是病害和虫害的并称,常对农、林、牧业等造成不良影响。本文介绍分为病害数据集和虫害数据集两部分。这些数据集用于图像分类系统。1 病害识别数据集1.1 农业病虫害研究图库(IDADP)1.1.1 介绍农业病虫害研究图库(IDADP)http://w
90+个各种疾病相关医疗数据集
含新冠、传染病、医学图像等
【通信原理】确知信号的性质分析与研究
在前面一文中已经详细且生动的解释了傅里叶变换和傅里叶级数的内容,【通信原理】揭开傅里叶级数与傅里叶变换的神秘面纱,而在今天这篇中有些公式你可能会产生疑惑,基本上需要用到傅氏变化的知识,可能需要你自行了解一下过程或参考一下上一篇文章的内容并加以理解。本文从通信系统中确知信号出发,分析了能量信号、功率信
【Pytorch】torch.nn.LeakyReLU()
Hello!ଘ(੭ˊᵕˋ)੭昵称:海轰标签:程序猿|C++选手|学生简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!唯有努力💪本文仅记录自己感兴趣的内容文章仅作为个人学习笔
鲁棒性的含义以及如何提高模型的鲁棒性
1、含义鲁棒是Robust的音译,也就是健壮和强壮的意思。它也是在异常和危险情况下系统生存的能力。比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。所谓“鲁棒性”,也是指控制系统在一定(结构,大小)的参数摄动下,维持其它某些性能的特性。根据对性
图像处理之高通滤波器与低通滤波器
目录高频与低频区分:高通滤波器:1.傅里叶变换:低通滤波器:总结: 在了解图像滤波器之前,先谈一下如何区分图像的高频信息和低频信息,所谓高频就是该像素点与周围像素差异较大,常见于一副图像的边缘细节和噪声等;而低频就是该像素点与周围像素差异变化不大,一般体现为图像的平坦区;
保姆级官方yolov7的训练自己的数据集以及项目部署
保姆级官方yolov7训练自己数据集的教学,并且可以直接嵌入到项目开发中用于检测
深度解析:什么是Diffusion Model?
©PaperWeekly 原创 ·作者 |鬼谷子引言在上一篇基于流的深度生成模型中详解介绍了有关流的生成模型理论和方法。目前为止,基于 GAN 生成模型,基于 VAE 的生成模型,以及基于 flow 的生成模型它们都可以生成较高质量的样本,但每种方法都有其局限性。GAN 在对抗训练过程中会出现模式崩
GAN(生成对抗网络)的系统全面介绍(醍醐灌顶)
本文是关于GAN学习的较为系统全面的介绍,主要针对初学者,希望能够对大家带来帮助。
【李宏毅《机器学习》2022】作业1:COVID 19 Cases Prediction (Regression)
文章目录【李宏毅《机器学习》2022】作业1:COVID 19 Cases Prediction (Regression)作业内容1.目标2.任务描述3.数据4.评价指标代码1.下载数据2.导入软件包3.定义公用函数(这一部分不需要修改)4.数据集5.神经网络模型6.特征选择7.训练器8.超参数设置
【深度学习】损失函数详解
损失函数
初学者安装Sklearn详细步骤(有详细步骤截图,亲测完成)
一、安装前的准备1.1 安装python(我安装的是最新版3.10.2)1.2 Win 10 操作系统二、正式安装(Win+R --> 'cmd'进入命令提示符 也就是终端)在安装sklearn之前,需要安装两个库,即numpy+mkl和scipy。但是最好不要使用pip3直接在终端安装,因为
【OpenCV-Python】:查找物体轮廓+计算轮廓面积、长度、重心
😺一、查找物体轮廓🐶1.1 函数API函数:img, contours, hierarchy = cv2.findContours(image, mode, method[, contours[, hierarchy[, offset ]]]).
学习笔记:多模态
1.多模态数据:不同的存在形式或信息来源均可被称之为一种模态。由两种或两种以上模态组成的数据称之为多模态数据(多模态用来表示不同形态的数据形式,或者同种形态不同的格式,一般表示文本、图片、音频、视频、混合数据)。多模态数据是指对于同一个描述对象,通过不同领域或视角获取到的数据,并且把描述这些数据的每
TF-IDF算法(原理+python代码实现)
目录前言一、TF-IDF的由来二、什么是TF-IDF?2.1 TF(Term Frequency)2.2 IDF(Inverse Document Frequency)2.3TF-IDF(Term Frequency-Inverse Document Frequency)三、TF-IDF应用四、代码
【深度学习】Pytorch实现CIFAR10图像分类任务测试集准确率达95%
文章目录前言CIFAR10简介Backbone选择训练+测试训练环境及超参设置完整代码部分测试结果完整工程文件Reference前言分享一下本人去年入门深度学习时,在CIFAR10数据集上做的图像分类任务,使用了多个主流的backbone网络,希望可以为同样想入门深度学习的同志们,提供一个方便上手、
YOLOv5的head详解
yolov5的head详解,主要是detect部分
GANs系列:CGAN(条件GAN)原理简介以及项目代码实现
cGAN的中心思想是希望 可以控制 GAN 生成的图片,而不 是单纯的随机生成图片。 具体来说,Conditional GAN 在生成器和判别器的输入中 增加了额外的 条件信息,生成器生成的图片只有足够真实 且与条件相符,才能够通过判别器。