最适合入门的100个深度学习实战项目

本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。

论文推荐:谷歌Masked Generative Transformers 以更高的效率实现文本到图像的 SOTA

在23年1月新发布的论文 Muse中:Masked Generative Transformers 生成文本到图像利用掩码图像建模方法来达到了最先进的性能,零样本 COCO 评估的 FID 分数为 7.88,CLIP 分数为 0.32——同时明显快于扩散或传统自回归模型。

Transformer时间序列预测

Transformer时间序列预测

损失函数 | BCE Loss(Binary CrossEntropy Loss)

BCE(Binary CrossEntropy)损失函数图像二分类问题--->多标签分类Sigmoid和Softmax的本质及其相应的损失函数和任务多标签分类任务的损失函数BCEPytorch的BCE代码和示例总结图像二分类问题—>多标签分类二分类是每个AI初学者接触的问题,例如猫狗分类

改进YOLO:YOLOv5结合swin transformer

yolov5改进,添加swing transformer

2022年深度学习在时间序列预测和分类中的研究进展综述

2022年时间序列预测中transformers衰落和时间序列嵌入方法的兴起,还有异常检测、分类也取得了进步,本文将尝试介绍一些在过去一年左右的时间里出现的更有前景和关键的论文

【通信原理】揭开傅里叶级数与傅里叶变换的神秘面纱

傅里叶变换和傅里叶级数是有史以来最伟大的数学发现之一。它们可以帮助我们将函数分解成其基本成分。它们揭示了任何数学函数的基本模块,但是傅里叶分析的公式对于连高数中sin2x的积分都不熟悉的工科白菜来说简直就是连多看它一样的勇气都没有,我想这就是为什么复杂的傅里叶分析成为大学中通信专业的疑难杂症的主要原

现在ChatGPT可以使用谷歌插件进行快速交互访问了!

现在ChatGPT可以使用谷歌插件进行快速交互访问了!

PyTorch安装与配置教程(2022.11)

PyTorch安装与配置教程(2022.11)

yolov5源码解析(9)--输出

本文章基于yolov5-6.2版本。主要讲解的是yolov5是怎么在最终的特征图上得出物体边框、置信度、物体分类的。

OpenCV之 BGR、GRAY、HSV色彩空间&色彩通道专题 【Open_CV系列(三)】

OpenCV之色彩空间与通道 文章目录 1.色彩空间 1.1 BGR色彩空间 1.2 GRAY色彩空间 1.3 HSV色彩空间 1.4 空间转换 1.4.1 BGR 转 GRAY 1.4.2 BGR 转 HSV 2. 色彩通道 2.1 色彩通道的拆分 2.1.1 cv2.split() 拆分BGR通

利用opencv带你玩转人脸识别-下篇(人脸录入,数据训练,人脸识别小案例快速入门)

🐚作者简介:苏凉(专注于网络爬虫,数据分析)🐳博客主页:苏凉.py的博客🌐系列专栏:python-opencv快速入门👑名言警句:海阔凭鱼跃,天高任鸟飞。📰要是觉得博主文章写的不错的话,还望大家三连支持一下呀!!!👉关注✨点赞👍收藏📂文章目录前言人脸信息录入保存(动图演示)数据训练1

常用的优化器合集

总结了常用的优化器(SGD、Adagrad、Adadelta、RMSprop、Adam、Adamax、Nadam等等。),其中包括梯度下降法、动量优化法和自适应学习率优化算法三种,分别从原理、公式、优缺点以及pytorch及tensorflow2的官方代码展示这几个方面进行演示,最后可视化对比了各个

matlab图像处理

matlab图像处理,边缘检测、线检测、旋转、缩放、二值化、灰度、扩展、读取,规定化直方图,归一化直方图,累积直方图,均衡化

联邦学习 (FL) 中常见的3种模型聚合方法的 Tensorflow 示例

联合学习 (FL) 是一种出色的 ML 方法,它使多个设备(例如物联网 (IoT) 设备)或计算机能够在模型训练完成时进行协作,而无需共享它们的数据。

基于卷积神经网络(cnn)的手写数字识别(PyTorch)

手写数字识别应用广泛,对其研究有重要价值。在众多算法中,卷积神经网络在手写数字识别上表现突出,而且在实现上诸多优点。使用卷积神经网络来处理手写数字是一个很好的选择。pytorch在算法实现上有着简洁,优雅等特点。因此采用卷积神经网络算法和pytorch框架来实现手写数字识别。

Diffusion 和Stable Diffusion的数学和工作原理详细解释

扩散模型的兴起可以被视为人工智能生成艺术领域最近取得突破的主要因素。而稳定扩散模型的发展使得我们可以通过一个文本提示轻松地创建美妙的艺术插图。所以在本文中,我将解释它们是如何工作的。

【生成模型】DDPM概率扩散模型(原理+代码)

DDPM即 Denoising Diffusion Probabilistic Model概率扩散模型,原理+代码解析

ChatGPT-最强AI模型!ChatGPT国内使用教程 ChatGPT注册

最近想必大家也听说过ChatGPT,从他的名字中chat也可见一斑,它是一个以对话方式进行交互的人工智能模型。由OpenAI开发,它能够根据用户输入的文本内容,自动生成新的文本内容。它的名称来源于它所使用的技术—— GPT-3 架构,即生成式语言模型的第 3 代。目前,用户只需进行注册,就可开始与

数学建模国赛/美赛常见赛题类型及建模方案(纯干货)

该文章主要用于让大家了解数学建模的基本题目类型,也可做比赛开始时模型选择的依据。