如何让AI帮你干活-娱乐(2)

用AI生成一个视频

关于Attention的超详细讲解

文章目录一、动物的视觉注意力二、快速理解Attention思想三、从Encoder-Decoder框架中理解为什么要有Attention机制四、Attention思想步骤五、Self-Attention5.1 Self-Attention的计算步骤5.2 根据代码进一步理解Q、K、V5.3 再来一个

GhostNet v2(NeurIPS 2022 Spotlight)原理与代码解析

首先回顾下GhostNet,对于输入 \(X\in \mathbb{R}^{H\times W\times C}\),Ghost module将一个标准的卷积替换成两步。首先用一个1x1卷积生成intrinsic feature。

Python中函数参数传递方法*args, **kwargs,还有其他

本文将讨论Python的函数参数。我们将了解*args和**kwargs,/和*的都是什么,

大语言模型集成工具 LangChain

介绍:通过可组合性使用大型语言模型构建应用程序【背景】大型语言模型 (LLM) 正在成为一种变革性技术,使开发人员能够构建他们以前无法构建的应用程序,但是单独使用这些 LLM 往往不足以创建一个真正强大的应用程序,当可以将它们与其他计算或知识来源相结合时,就有真的价值了。LangChain 旨在协助

Python图像处理:频域滤波降噪和图像增强

快速傅里叶变换(FFT)是一种将图像从空间域变换到频率域的数学技术,是图像处理中进行频率变换的关键工具,本文将讨论图像从FFT到逆FFT的频率变换所涉及的各个阶段,并结合FFT位移和逆FFT位移的使用。

史上最全学习率调整策略lr_scheduler

学习率是深度学习训练中至关重要的参数,很多时候一个合适的学习率才能发挥出模型的较大潜力。所以学习率调整策略同样至关重要,这篇博客介绍一下Pytorch中常见的学习率调整方法。

机器学习:基于神经网络对用户评论情感分析预测

神经网络模型的思想来源于模仿人类大脑思考的方式。神经元是神经系统最基本的结构和功能单位,分为突起和细胞体两部分。突起作用是接受冲动并传递给细胞体,细胞体整合输入的信息并传出。人类大脑在思考时,神经元会接受外部的刺激,当传入的冲动使神经元的电位超过阈值时,神经元就会从抑制转向兴奋,并将信号向下一个神经

NoveAI本地环境搭建、AI作画

AI作画,总结下自己的操作过程

机器学习中的数学原理——模型评估与交叉验证

机器学习中的模型评估与交叉验证!这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下白话机器学习中的数学——模型评估与交叉验证》!

【审稿意见】科研菜鸟如何攥写审稿意见?万能模板!!!

如何提出审稿意见?审稿万能模板?

结合基于规则和机器学习的方法构建强大的混合系统

在本文中,将介绍如何将手动规则和ML结合使得我们的方案变得更好。

DCGAN理论讲解及代码实现

DCGAN也叫深度卷积生成对抗网络,DCGAN就是将CNN与GAN结合在一起,生成模型和判别模型都运用了深度卷积神经网络的生成对抗网络。DCGAN将GAN与CNN相结合,奠定了之后几乎所有GAN的基本网络架构。DCGAN极大地提升了原始GAN训练的稳定性以及生成结果的质量...

2. IMU原理及姿态融合算法详解

IMU原理及姿态融合算法详解

【pytorch】有关nn.EMBEDDING的简单介绍

假设有一本字典,就一共只有10单词,每个单词有5个字母组成。每一页上只写一个单词,所以这10页纸上分别写了这10个单词。内如如下,我们假定这本字典叫, 这里的10和5即上面介绍的含义,10个单词,每个单词5个字母;现在我要查看第2页和第3页(从0开始),那么我会得到 [s,m,a,l,l], [w,

AI生成图像竟如此真实了?Stable Diffusion Model本地部署教程

Stable Diffusion Model 是一个基于扩散模型的图像生成模型。stable-diffusion-webui 是 AUTOMATIC1111 大佬在 Github 上开源的一个专用于图片生成模型的 WebUI,可以在本地部署,支持导入模型和自己训练。重要的是,该项目的部署方式非常简单

ROS点云类型sensor_msgs::PointCloud2与PCL的PointCloud<T>点云类型转换

ROS中sensor_msgs::PointCloud2类型定义;与PCL的PointCloud点云数据类型转换;moveFromROSMsg()函数解析;点云格式转换中的注意事项。

Pytorch文档解读|torch.nn.MultiheadAttention的使用和参数解析

整体称为一个单注意力头,因为运算结束后只对每个输入产生一个输出结果,一般在网络中,输出可以被称为网络提取的特征,那我们肯定希望提取多种特征,[ 比如说我输入是一个修狗狗图片的向量序列,我肯定希望网络提取到特征有形状、颜色、纹理等等,所以单次注意肯定是不够的 ]因为是拼接而成的,所以每个单注意力头其实

rk3588使用npu进行模型转换和推理,加速AI应用落地

本来想使用tensorrt进行加速推理,但是前提需要cuda,rk的板子上都是Arm的手机gpu,没有Nvidia的cuda,所以这条路行不通。使用该NPU需要下载RKNN SDK,RKNN SDK 为带有 NPU 的RK3588S/RK3588 芯片平台提供编程接口,能够帮助用户部署使用 RKNN

利用 NVIDIATAO 和 Weight&Bias 加速AI开发

利用图像分类、对象检测、和其他形式的 AI 可以推动公司和商业部门内部的大规模转型。然而,从头开始构建人工智能和深度学习模型是一项艰巨的任务。构建这些模型的一个共同先决条件是拥有大量高质量的训练数据和准备数据、构建神经网络以及持续微调模型以优化性能的正确专业知识。对于开始机器学习 (ML) 之旅的组