如何根据企业自身文化定向训练chatgpt及示例源码

需要注意的是,这里使用的是OpenAI的GPT-2模型,需要根据实际情况选择相应的模型和超参数。总之,根据企业自身文化定向训练ChatGPT,需要充分挖掘和利用与公司文化相关的数据,建立合适的数据集,训练和优化模型,最终让ChatGPT符合公司文化,提升企业形象和用户体验。建立数据集:将清洗后的数据

第十一届“泰迪杯”数据挖掘挑战赛(B题:产品订单的数据分析与需求预测)

2. 基于上述分析,建立数学模型,对附件预测数据(predict_sku1.csv)中给出的产品,预测未来3月(即2019年1月、2月、3月)的月需求量,将预测结果按照表3的格式保存为文件result1.xlsx,与论文一起提交。(2) 产品所在区域对需求量的影响,以及不同区域的产品需求量有何特性;

pyton\yolov8安装和基础使用,训练和预测

到这里yolov8就安装好了,我这是cpu的版本,GPU本人也在摸索中,就不献丑了,如果不想在终端验证也可以到ultralytics-main\ultralytics\yolo\v8\detect\predict.py 这个python文件里把图片的路径修改然后运行就好了,图片路径和上面一样的。(这

类ChatGPT逐行代码解读(1/2):从零起步实现Transformer、ChatGLM-6B

transformer强大到什么程度呢,基本是17年之后绝大部分有影响力模型的基础架构都基于的transformer(比如,有200来个,包括且不限于基于decode的GPT、基于encode的BERT、基于encode-decode的T5等等)通过博客内的这篇文章《》,我们已经详细了解了trans

ros中SLAM的EVO、APE测评——SLAM精度测评(一)

用于处理、评估和比较里程计和SLAM算法的轨迹输出。支持的轨迹格式:“TUM”轨迹文件“KITTI”姿态文件“EuRoC MAV”(.csv groundtruth和TUM轨迹文件)ROS和ROS2 BAG文件,带有几何图形/PoseStamped、几何图形/TransformStamped、几何图

GPT4和ChatGPT的区别,太让人震撼

全面对比chatgpt与gpt4的区别,差距太大了

Python Module — OpenAI ChatGPT API

与 ChatGPT 进行 C/S 交互,返回 AI 模型生成的对话文本。注意,该接口是 Stateless 的,每次调用都不包含对话的上下文。这意味着需要客户端应用程序自己维护 “聊天记录“。OpenAI Python SDK 用于开发与 OpenAI RESTful API 进行交互的客户端应用程

Yolov8训练自己的数据集

用yolov8训练自己的数据集,熟悉yolov8整个流程,便于下一步魔改网络等

RKNN模型部署(3)—— 模型转换与测试

将pth模型转换成rknn模型,然后调用rknn模型进行测试

Pytorch优化器全总结(三)牛顿法、BFGS、L-BFGS 含代码

这篇文章是优化器系列的第三篇,主要介绍牛顿法、BFGS和L-BFGS,其中BFGS是拟牛顿法的一种,而L-BFGS是对BFGS的优化,那么事情还要从牛顿法开始说起。L-BFGS即Limited-memory BFGS。 L-BFGS的基本思想就是通过存储前m次迭代的少量数据来替代前一次的矩阵,从而大

【ChatGPT】ChatGPT还能保持多久的神话?

经过对多篇博客和文章的阅读后,对chatGPT未来发展趋势的个人预测。

ConvNeXt V2学习笔记

在改进的架构和更好的表示学习框架的推动下,视觉识别领域在21世纪20年代初实现了快速现代化和性能提升。例如,以ConvNeXt[52]为代表的现代ConvNets在各种场景中都表现出了强大的性能。虽然这些模型最初是为使用ImageNet标签的监督学习而设计的,但它们也可能受益于自监督学习技术,如蒙面

详解Pytorch中的torch.nn.MSELoss函,包括对每个参数的分析!

详解Pytorch中的torch.nn.MSELoss函数,包括对每个参数的分析!

深度卷积神经网络(AlexNet)

在LeNet提出后,卷积神经网络在计算机视觉和机器学习领域中很有名气。但卷积神经网络并没有主导这些领域。这是因为虽然LeNet在小数据集上取得了很好的效果,但是在更大、更真实的数据集上训练卷积神经网络的性能和可行性还有待研究。事实上,在上世纪90年代初到2012年之间的大部分时间里,神经网络往往被其

欠拟合的原因以及解决办法(深度学习)

之前这篇文章,我分析了一下深度学习中,模型过拟合的主要原因以及解决办法:过拟合的原因以及解决办法(深度学习)_大黄的博客-CSDN博客这篇文章中写一下深度学习中,模型欠拟合的原因以及一些常见的解决办法。也就是为什么我们设计的神经网络它不收敛?这里还是搬这张图出来,所谓欠拟合(也就是神经网络不收敛),

阿里版ChatGPT:通义千问突然上线

阿里版的ChatGPT:通义千问突然上线了,由达摩院开发,目前开放预约,但仅面向企业。官网显示通义千问是一个专门响应人类指令的大模型,是效率助手,也是点子生成机。

一口气看完人工智能发展与ChatGPT

1950年,计算机科学之父发表了一篇论文《COMPUTING MACHINERY AND INTELLILGENCE》(《计算机器与智能》)提到了一个词。原始游戏是这样的:玩家A是男性,玩家B是女性,玩家C(扮演审讯者的角色)可以是任何性别。在模仿游戏中,玩家C看不到玩家A或玩家B(并且只知道他们是

YOLOv5网络结构,训练策略详解

前面已经讲过了Yolov5模型目标检测和分类模型训练流程,这一篇讲解一下yolov5模型结构,数据增强,以及训练策略。

下载IEEE期刊Latex模板步骤

下载IEEE期刊Latex模板步骤

Replika:AI智能聊天机器人

Replika,这个名字可能有点拗口,但如果你知道这是复制品Replica的同音变体,你即刻能明白这个产品的定位了。官方Luka公司定义它是你的AI朋友,默默学习你,最终成为你的复制品。它不像现在市面上各大厂的AI助理一样具备日常效率管理的功能,它是一幅空白的画布,没有基础知识,没有历史背景,没有任