PyTorch中的可视化工具
本文主要介绍Pytorch中的一些可视化工具
DNN(全连接神经网络)
一.DNN网络一般拥有三层1.输入层2.隐藏层3.输出层简单网络如下:二.正向传播从第二层开始,每一个神经元都会获得它上一层所有神经元的结果。即每一个 y = wx + b的值。具体分析如下:如此下去就会非常可能出现了一个问题------就是越靠后的神经元获得的y值会非常大,试想一下,如果这个数远远
【周末闲谈】AI的旅途
忙碌的一周终于快要过去了,本周就让我们来谈谈AI这个热点话题吧😉(ps:但愿下个星期会更加轻松)AI无论在那个时代都是人们津津乐道的话题,人们即担心其的发展终有一天会取代人类,又好奇它能够成长到何种地步,今天就让我们来谈谈AI的发展史吧。
可视化CNN和特征图
卷积神经网络(cnn)是一种神经网络,通常用于图像分类、目标检测和其他计算机视觉任务。CNN的关键组件之一是特征图,它是通过对图像应用卷积滤波器生成的输入图像的表示。
SeAFusion:首个结合高级视觉任务的图像融合框架
在SeAFusion发表之前,关于图像融合的研究一直在魔改网络,设计loss function, 调整学习范式中徘徊,SeAFusion给与了我们新的启发,即联系高级视觉任务来研究图像融合。尽管SeAFusion的方法设计还比较简单,但是这也给了我们更多的优化空间。此外之前感觉大家觉得红外和可见光图
人工智能学习——神经网络(matlab+python实现)
神经网络文章目录神经网络前言一、神经网络理论知识二、matlab实现神经网络1.引入库2.读入数据三、python实现神经网络1.引入库总结前言此文章仅作为个人学习笔记使用,主要介绍理论以及学习过程,仅供参考!一、神经网络理论知识示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据
超分之EDSR
这篇文章是SRResnet的升级版——EDSR,其对网络结构进行了优化(去除了BN层),省下来的空间可以用于提升模型的size来增强表现力。此外,作者提出了一种基于EDSR且适用于多缩放尺度的超分结构——MDSR。EDSR在2017年赢得了NTIRE2017超分辨率挑战赛的冠军。参考目录:①深度学习
yolov7开源代码讲解--训练代码
以前看CNN训练代码的时候,往往代码比较易懂,基本很快就能知道各个模块功能,但到了后面很多出来的网络中,由于加入了大量的trick,导致很多人看不懂代码,代码下载以后无从下手。训练参数和利用yaml定义网络详细过程可以看我另外的文章,都有写清楚。其实不管什么网络,训练部分大体都分几个部分:1.网络的
CPU、GPU、NPU的区别
CPU、GPU、NPU的区别
【深度学习】(1) CNN中的注意力机制(SE、ECA、CBAM),附Pytorch完整代码
大家好,今天和各位分享一下如何使用 Pytorch 构建卷积神经网络中的各种注意力机制,如:SENet,ECANet,CBAM。注意力机制的原理 和 TensorFlow2 的实现方式可以看我下面两篇博文:SENet、ECANet:https://blog.csdn.net/dgvv4/articl
深度解析预训练权重的本质和作用:你真的了解它们吗?
为了训练自定义模型,通常需要使用大量标注好的图像数据来训练模型。但是,当可用的训练数据不够多时,可以使用预训练权重来提高模型的性能。
神经网络数据增强transforms的相关操作(持续更新)
transforms的相关操作(Pytorch)一、图像的相关变化1、格式转换(1)transforms.ToTensor()(2)transforms.ToPILImage()1、图像大小(1)一、图像的相关变化1、格式转换(1)transforms.ToTensor()可将PIL格式、数组格式转
Hugging face预训练模型下载和使用
Hugging face预训练模型下载和使用
基于python实现的生成对抗网络GAN
基于python实现的生成对抗网络GAN
STGCN时空图卷积网络:用于交通预测的深度学习框架
提出了一种新的深度学习架构——时空图卷积网络,用于交通预测任务。该架构包括几个时空卷积块,它们是图卷积层[Defferrard等人,2016]和卷积序列学习层的组合,以建模空间和时间依赖性。据我们所知,在交通研究中应用纯卷积结构同时从图结构时间序列中提取时空特征尚属首次。我们在两个真实世界的交通数据
如何提高bp神经网络精度,改进bp神经网络的方案
人工神经网络,是一种旨在模仿人脑结构及其功能的信息处理系统,就是使用人工神经网络方法实现模式识别.可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,神经网络方法允许样品有较大的缺损和畸变.神经网络的类型很多,建立神经网络模型时,根据研究对象的特点,可以考虑不同的神经网络模型. 前馈型
【论文精读】TMI2021医学图像分割 SMU-Net
SMU-Net: Saliency-guided Morphology-aware U-Net for Breast Lesion Segmentation in Ultrasound ImageSMU-Net: 显著引导形态感知U-Net用于超声图像乳腺病变分割深度学习方法,尤其是卷积神经网络已成
神经网络自适应PID控制及其应用
神经网络自适应的PID具有极强的现实意义,因为PID作为影响力和应用面极大的经典控制算法,对于其优化能够带来工业界、控制工程领域的极大便利,在实际的应用场景中,对于PID的使用,往往通过手动调参的方式去实验,在一些损失影响不大的系统中,往往耗费时间,在损失影响较大的系统中,往往会造成一些不可估量的成
机器学习笔记 - 什么是图注意力网络?
顾名思义,图注意力网络是图神经网络和注意力层的组合。要理解图注意力网络,我们首先需要了解什么是注意力层和图神经网络。首先,我们将看一下对图神经网络和注意力层的基本理解,然后我们将重点介绍两者的结合。让我们看一下图神经网络。图神经处理是数据科学和机器学习领域研究的热点之一,因为它们具有通过图数据进行学
特征融合的分类和方法
1、特征融合的定义特征融合方法是模式识别领域的一种重要的方法,计算机视觉领域的图像识别问题作为一种特殊的模式分类问题,仍然存在很多的挑战,特征融合方法能够综合利用多种图像特征,实现多特征的优势互补,获得更加鲁棒和准确性的识别结果。2、特征融合的分类按照融合和预测的先后顺序,分类为早融合和晚融合(Ea