毕业设计-基于机器视觉的手势识别系统-OPENCV

毕业设计-基于机器视觉的手势识别系统-OPENCV:人机的交互活动最早诞生是为了能更好更方便的控制计算 机,输入信息。最常用的也是最突出的就是利用键盘和鼠标进 行人与计算机的信息交换,但是这也成为了人机交互发展的瓶 颈。当前广泛使用的WIMP图形用户接口,因为从用户到计 算机的通信是串口的,用户不能

神经网络模型的参数量和FlOPS

FLOPS:注意S是大写,是 “每秒所执行的浮点运算次数”(floating-point operations per second)的缩写。它常被用来估算电脑的执行效能,尤其是在使用到大量浮点运算的科学计算领域中。正因为FLOPS字尾的那个S,代表秒,而不是复数,所以不能省略掉。FLOPs:注意s

【机器学习】李宏毅-食物图像分类器

卷积层,256个channel,512个filter,每个filter大小3*3,stride=1,padding=1,输入256*16*16,输出512*16*16。卷积层,512个channel,512个filter,每个filter大小3*3,stride=1,padding=1,输入512*

如何避免LLM的“幻觉”(Hallucination)

生成式大语言模型(LLM)可以针对各种用户的 prompt 生成高度流畅的回复。然而,大模型倾向于产生幻觉或做出非事实陈述,这可能会损害用户的信任。

【torch.nn.init】初始化参数方法解读

稀疏矩阵:将2D输入张量填充为稀疏矩阵,其中非零元素将从正态分布N ( 0 , 0.01 ) N(0,0.01)N(0,0.01)中提取。正态分布:从给定均值和标准差的正态分布N(mean, std)中生成值,填充输入的张量或变量。xavier_normal 分布:用一个正态分布生成值,填充输入的张

基于注意力的时空图卷积网络交通流预测

由于图信号的卷积运算等于通过图傅里叶变换变换到谱域的这些信号的乘积,因此上式可以理解为分别将gθ和x进行傅里叶变换到谱域,然后将它们的变换结果相乘,进行傅里叶反变换,得到卷积运算的最终结果。因此,周周期分量的设计是为了捕捉交通数据中的周周期特征。时间维度卷积:图卷积操作在空间维度捕获图上每个节点的相

注意力机制(一):注意力提示、注意力汇聚、Nadaraya-Watson 核回归

目录注意力机制(Attention Mechanism)是一种人工智能技术,它可以让神经网络在处理序列数据时,专注于关键信息的部分,同时忽略不重要的部分。在自然语言处理、计算机视觉、语音识别等领域,注意力机制已经得到了广泛的应用。注意力机制的主要思想是,在对序列数据进行处理时,通过给不同位置的输入信

基于CNN卷积神经网络 猫狗图像识别

基于CNN卷积神经网络 猫狗图像识别

【机器学习项目实战10例】(七):基于逻辑回归方法完成垃圾邮件过滤任务

下载下来的数据集是csv格式的,每条数据有两列,分别是文本内容和对应的标签(ham or spam)。我们首先利用python的pandas库读取csv文件中的数据,然后先对数据进行简单分析,然后对数据进行预处理,最后是将文本内容向量化,文本向量化后才可以利用算法模型进行文本分类任务。(1)读取数据

Jeston NANO 配置并安装 torch+ torchvision

由于nano的arm64架构,所以用它进行深度学习配置部署时会与用普通电脑(x86)有所不同

经典文献阅读之--NeRF-SLAM(单目稠密重建)

NeRF 是 2020 年 ECCV 上获得最佳论文荣誉提名的工作,其影响力是十分巨大的,不论是后续的学术论文还是商业落地,都引起了大量从业人员的关注。NeRF 将隐式表达推上了一个新的高度,仅用 2D 的 posed images 作为监督,即可表示复杂的三维场景,在新视角合成这一任务上的表现是非

OSTrack的一些代码执行命令讲解

执行如下命令可以生成路径文件,分别会在OSTrack/lib/train/admin目录和OSTrack/lib/test/evaluation目录下生成local.py文件,里面是各种路径的默认设置。配置文件为OSTrack/experiments/ostrack/vitb_256_mae_ce_

使用LOTR合并检索提高RAG性能

RAG结合了两个关键元素:检索和生成。本文将介绍使用使用Merge retriver改进RAG的性能

人工智能生成文本检测在实践中使用有效性探讨

本文介绍了关于如何检测ai生成文本的思路。可以使用的主要指标是生成文本的困惑度。还介绍了这种方法的一些缺点,包括误报的可能性。希望这有助于理解检测人工智能生成文本背后的细节。但是当我们讨论检测人工智能生成文本的技术时,这里的假设都是整个文本要么是人类编写的,要么是人工智能生成的。但是实际上文本往往部

基于CNN和双向gru的心跳分类系统

论文,提出了基于卷积神经网络和双向门控循环单元(CNN + BiGRU)注意力的心跳声分类,论文不仅显示了模型还构建了完整的系统。

基于VGG16的猫狗分类实战

基于VGG16的猫狗分类实战

基于Transformer的多变量风电功率预测TF2

Transformer目前大火,作为一个合格的算法搬运工自然要跟上潮流,本文基于tensorflow2框架,构建transformer模型,并将其用于多变量的风电功率负荷预测。实验结果表明,相比与传统的LSTM,该方法精度更高,缺点也很明显,该方法需要更多的数据训练效果才能超过传统方法,而且占用很高

深度学习之路:自动驾驶沙盘与人工智能专业的完美融合

探寻未来交通的深度学习之路,本文以“深度学习之路:自动驾驶沙盘与人工智能专业的完美融合”为题,详细解析了自动驾驶沙盘在人工智能专业教学与科研中的突出意义。通过结合深度学习理论与实际应用,文章展示了小车的自动驾驶原理、传感器技术,以及图像识别红绿灯、车道线等关键功能的源码。强调自动驾驶沙盘作为高校科研

图像识别与分类:实战指南

在计算机视觉中,图像识别与分类的目标是根据图像内容将其分配给一个或多个类别。数据预处理:包括缩放、裁剪、翻转等操作,以增强图像数据的多样性。特征提取:从原始图像中提取有助于识别和分类的特征。模型训练:使用监督学习算法训练模型以区分不同类别。模型评估:使用一组测试数据评估模型的性能。应用模型:将训练好

人工智能生成文本检测在实践中使用有效性探讨

本文介绍了关于如何检测ai生成文本的思路。希望这有助于理解检测人工智能生成文本背后的细节。