科研论文必备:10大平台和工具助你高效查找AI文献

Research Rabbit是一款基于引文网络的文献检索及可视化工具,它可以根据用户提供的种子文献,自动推荐相关文献,并以可视化的方式展示文献之间的关系,可查看领域大牛及学者间的合作关系。Connected Papers是一款基于引文网络的文献检索与分析工具,它可以根据用户提供的一篇种子文献,构建

用国产AI大模型通义千问写论文的保姆级教程(附AI写作工具)

之前咱们出过两篇保姆级教程,分别是用ChatGPT写学术论文和用Kimi写论文的教程,今天我选择的是阿里巴巴出品的ai大模型通义千问,亲测一下用通义千问写出来的论文初稿水平如何。通过AI的联系上下方功能和角色扮演功能,非常快速完成论文初稿的建立,而对于论文内容润色和细化,则需要不断通过提问AI,提问

如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧

在深度学习领域,优化器的选择对模型性能至关重要。

【人工智能环境搭建】Win11+WSl2+Ubuntu+CUDA+cuDNN+Pytorch搭建教程

作为一名科班研究生,在科研环境方面踩了很多坑,历时两天终于搭建成功环境,借此契机想将其中的坑之处与大家分享,帮助刚入门的小白避免一些坑。下面就开是我们今天的教程吧!本次教程版本:Win11、WSL2、Ubuntu22.04、CUDA12.4、cuDNN8.9.7、Pytorch2.4.1、pytho

【人工智能】新手版手写数字识别

MNIST数据集包含60000个训练集和10000测试数据集。分为图片和标签,图片是28x28的像素矩阵,标签为0~9共10个数字所搭建的网络不包括输入层的情况下,共有7层:5个卷积层、2个全连接层 其中第一个卷积层的输入通道数为数据集图片的实际通道数。MNIST数据集为灰度图像,通道数为1 第1个

医学图像分割,Transformer+UNet的14种融合方法

在此框架内,Cross Transformer 模块采用可扩展采样来计算两种模态之间的结构关系,从而重塑一种模态的结构信息,以与 Swin Transformer 同一局部窗口内两种模态的相应结构保持一致。在编码器中,输入的MRI扫描X∈RC×H×W×D,具有C个通道(模态),H×W的空间分辨率和D

打造全场景、跨领域、多模态的AI工作流 | 开源图像标注工具 X-AnyLabeling v2.4.0 正式发布!

X-AnyLabeling 是一款基于AI推理引擎和丰富功能特性于一体的强大辅助标注工具,其专注于实际应用,致力于为图像数据工程师提供工业级的一站式解决方案,可自动快速进行各种复杂任务的标定。

三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力

本文深入探讨Transformer模型中三种关键的注意力机制:自注意力、交叉注意力和因果自注意力。我们不仅会讨论理论概念,还将使用Python和PyTorch从零开始实现这些注意力机制。

LYT-Net——轻量级YUV Transformer 网络低光照条件图像修复

低光照图像增强(LLIE)是计算机视觉(CV)领域的一个重要且具有挑战性的任务。在低光照条件下捕获图像会显著降低其质量,导致细节和对比度的丧失。这种退化不仅会导致主观上不愉快的视觉体验,还会影响许多CV系统的性能。LLIE的目标是在提高可见度和对比度的同时,恢复暗环境中固有的各种失真。低光照条件指的

多模态AI:原理、应用与未来展望

多模态AI技术正引领着人工智能的发展方向,通过融合多种数据类型,提供更智能的解决方案。尽管面临诸多挑战,未来的多模态AI系统将变得更加智能、自适应和强大,推动各行各业的智能化进程。通过不断探索和创新,我们将迎来一个更加智能化的未来。

多代理强化学习综述:原理、算法与挑战

多代理强化学习是强化学习的一个子领域,专注于研究在共享环境中共存的多个学习代理的行为。每个代理都受其个体奖励驱动,采取行动以推进自身利益

大模型科普:大模型与传统AI的区别

本文详尽地介绍了大模型(特别是大规模语言模型LLM)的基本概念、与传统AI的区别、训练过程以及生成答案的机制,这对于理解当前AI技术的前沿进展非常有帮助。

AI基本概念(人工智能、机器学习、深度学习)

一、概述ChatGPT 3.5是OpenAI在ChatGPT系列基础上进行改进的一款AI模型,它在自然语言处理方面展现出了非常强大的能力,能够进行对话、阅读、生成文本等多种任务。二、主要特点模型规模与参数:ChatGPT 3.5的预训练模型包含了1750亿个参数,是目前最大的自然语言处理模型之一。多

华为开源自研AI框架昇思MindSpore应用案例:计算高效的卷积模型ShuffleNet

华为开源自研AI框架昇思MindSpore应用案例:计算高效的卷积模型ShuffleNet

如何搭建10万个H100 GPU的集群:电力、并行化、网络拓扑与成本优化

在现代人工智能的发展中,构建大规模GPU集群是提升计算能力的关键手段。今天我们探讨如何搭建一个包含10万个H100 GPU的集群。这个项目不仅涉及巨大的资本支出,还面临电力供应、并行化处理、网络拓扑结构以及可靠性和恢复等多方面的挑战。通过深入分析这些问题,本文将为大家揭示构建如此庞大集群的复杂性和关

动态注意力机制新突破!11个最新idea,看了就能发顶会!

在处理复杂数据时,可以通过引入,让模型根据输入数据的特点动态调整关注点,聚焦最关键的信息,来提高模型的处理能力和效率。这种比传统方法更高效、灵活的技术足以应对各种复杂任务和挑战,具有强大的适应性,因此它的应用范围非常广泛,创新空间也很大,是深度学习领域的一个热门研究方向。目前常见的关于动态注意力机制

图像数据增强库综述:10个强大图像增强工具对比与分析

本文旨在全面介绍当前广泛使用的图像数据增强库,分析其特点和适用场景,以辅助研究人员和开发者选择最适合其需求的工具。

【AI大模型】深入Transformer架构:编码器部分的实现与解析(下)

在Transformer中前馈全连接层就是具有两层线性层的全连接网络。前馈全连接层的作用是考虑注意力机制可能对复杂过程的拟合程度不够, 通过增加两层网络来增强模型的能力.

【自用】动手学深度学习——跟李沐学AI要点

自用,是学习实时笔记,未条条记录,没有进一步加工组织语言,按需查看。

FredNormer: 非平稳时间序列预测的频域正则化方法

FredNormer的核心思想是从频率角度观察数据集,并自适应地增加关键频率分量的权重。