LLM高效推理:KV缓存与分页注意力机制深度解析

随着大型语言模型(LLM)规模和复杂性的持续增长,高效推理的重要性日益凸显。KV(键值)缓存与分页注意力是两种优化LLM推理的关键技术。本文将深入剖析这些概念,阐述其重要性,并探讨它们在仅解码器(decoder-only)模型中的工作原理。

Vision Transformer中的图像块嵌入详解:线性投影和二维卷积的数学原理与代码实现

在 Vision Transformer 中,图像首先被分解为正方形图像块,然后将这些图像块展平为单个向量嵌入。这些嵌入可以被视为与文本嵌入(或任何其他嵌入)完全相同,甚至可以与其他数据类型进行连接。

STAR: 利用时空注意力机制和动态频率损失的视频超分辨率增强框架

STAR (Spatial-Temporal Augmentation with Text-to-Video Models) 提出了一种创新的视频超分辨率解决方案,针对现有模型中存在的过度平滑和时间一致性不足等问题进行了系统性改进。

DeepMind发布Matryoshka(套娃)量化:利用嵌套表示实现多精度LLM的低比特深度学习

本文将介绍 Google DeepMind 提出的 Matryoshka 量化技术,该技术通过从单个大型语言模型 (LLM) 实现多精度模型部署,从而革新深度学习。我们将深入研究这项创新技术如何提高 LLM 的效率和准确性。

MOIRAI-MOE: 基于混合专家系统的大规模时间序列预测模型

MOIRAI-MOE 采用纯解码器架构,通过混合专家模型实现了频率无关的通用预测能力,同时显著降低了模型参数规模。

知识蒸馏方法探究:Google Distilling Step-by-Step 论文深度分析

Google Research 团队发表的论文《Distilling Step-by-Step!》提出了一种创新的知识蒸馏方法,不仅能有效减小模型规模,还能使学生模型在某些任务上超越其教师模型。

大语言模型的解码策略与关键优化总结

本文系统性地阐述了大型语言模型(Large Language Models, LLMs)中的解码策略技术原理及其实践应用。

DeepSeek 背后的技术:GRPO,基于群组采样的高效大语言模型强化学习训练方法详解

本文将深入分析 GRPO 的工作机制及其在语言模型训练领域的重要技术突破,并探讨其在实际应用中的优势与局限性。

基于结构化状态空间对偶性的贝叶斯注意力机制设计与实现

本文介绍了一种贝叶斯风格的注意力机制,用于序列预测。我们将详细阐述如何使用马尔可夫链蒙特卡罗法(MCMC)训练该模型。

CoAT: 基于蒙特卡洛树搜索和关联记忆的大模型推理能力优化框架

研究者提出了一种新的关联思维链(Chain-of-Associated-Thoughts, CoAT)方法,该方法通过整合蒙特卡洛树搜索(Monte Carlo Tree Search, MCTS)和关联记忆机制来提升大语言模型(LLMs)的推理能力。

PyTorch Profiler 性能优化示例:定位 TorchMetrics 收集瓶颈,提高 GPU 利用率

本文是将聚焦于指标收集,演示指标收集的一种简单实现如何对运行时性能产生负面影响,并探讨用于分析和优化它的工具与技术。

DeepSeek × 时间序列 :DeepSeek-TS,基于状态空间增强MLA与GRPO的时序预测新框架

本文介绍 DeepSeek-TS,该框架受到 DeepSeek 中高效的多头潜在注意力(MLA)和群组相对策略优化(GRPO)技术的启发,并将其应用于多产品时间序列预测。

SRMT:一种融合共享记忆与稀疏注意力的多智能体强化学习框架

本研究将系统阐述**SRMT的技术架构、核心功能、应用场景及实验数据**,深入分析其在**多智能体强化学习(MARL)**领域的技术优势。

EvalPlanner:基于“计划-执行”双阶段的大语言模型评估框架

EvalPlanner[1],这是一种创新的LLM评估算法。该算法采用计划-执行的双阶段范式,首先生成无约束的评估计划,随后执行该计划并做出最终判断。这种方法显著提升了评估过程的系统性和可靠性。

DeepSeek技术报告解析:为什么DeepSeek-R1 可以用低成本训练出高效的模型

DeepSeek-R1 通过创新的训练策略实现了显著的成本降低,同时保持了卓越的模型性能。本文将详细分析其核心训练方法。

PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络

神经常微分方程(Neural ODEs)是深度学习领域的创新性模型架构,它将神经网络的离散变换扩展为连续时间动力系统

DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构

DeepSeekMoE是一种创新的大规模语言模型架构,通过整合专家混合系统(Mixture of Experts, MoE)、改进的注意力机制和优化的归一化策略,在模型效率与计算能力之间实现了新的平衡。

知识蒸馏技术原理详解:从软标签到模型压缩的实现机制

**知识蒸馏**是一种通过性能与模型规模的权衡来实现模型压缩的技术。其核心思想是将较大规模模型(称为教师模型)中的知识迁移到规模较小的模型(称为学生模型)中。本文将深入探讨知识迁移的具体实现机制。

面向长文本的多模型协作摘要架构:多LLM文本摘要方法

论文提出的方法旨在处理长文本文档输入,这类文档可能包含数万字,通常超出大多数标准LLM的上下文窗口限制,论文建立了一个两阶段处理流程

Meta-CoT:通过元链式思考增强大型语言模型的推理能力

Meta-CoT 基于链式思考(CoT)方法,使 LLMs 不仅能够建模推理步骤,还能够模拟“思考”过程。这种转变类似于人类在面对难题时的探索、评估和迭代方式。