【高录用|24-25年EI会议推荐】计算机科学、通信、图像、人工智能、算法、应用技术、电子信息工程等多领域征稿参会
【高录用|24-25年EI会议推荐】计算机科学、通信、图像、人工智能、算法、应用技术、电子信息工程等多领域征稿参会
月之暗面科技有限公司(Moonshot AI)内推
加入月之暗面 (Moonshot AI),你将有机会参与到前沿的人工智能技术研究与产品开发中。来和 kimi 一起登月吧!
【AI大模型】Transformer模型构建指南:轻松掌握核心技术
通过本专栏的博文,我们已经完成了所有组成部分的实现, 接下来就来实现完整的编码器-解码器结构. 接着将基于以上结构构建用于训练的模型.🍔 Tansformer模型构建过程的代码分析 nn.init.xavier_uniform演示:🍔 小结 学习并实现了编码器-解码器结
【人工智能】线性回归
一、使用正规化方法计算下列样本的预测函数1. 没有归一化之前2. 归一化之后二、读取ex1data2.txt中的数据,建立样本集,使用正规化法获取(房屋面积,房间数量)与房屋价格间的预测函数1. 读取数据,建立样本集2. 设置X、y3. 计算theta三、读取ex1data1.txt中的数据,建立样
20240927 每日AI必读资讯
我们最近发布的语音到语音转换和OpenAI O1标志着交互和智能的新时代的开始——这些成就是由你们的聪明才智和手艺实现的。在这个过程中,AI会通过多次尝试得到反馈。这个阶段的重点是让AI明白哪些地方出错了,并且不会只做一些很小的、无关紧要的修改,而是能够真正找到并改正大的错误。这一成功证明了我们出色
【代码复现训练】Vision Transformer(ViT)
尝试使用ViT做一个简单的花卉分类任务,默认使用ViT-B/16模型
张量分解(3)——CP分解
张量分解第三节,详细解释了何为CP分解,CP分解的公式,如何优化CP分解中参数。
【深度学习|地学应用】人工智能技术的发展历程与现状:探讨深度学习在遥感地学中的应用前景
【深度学习|地学应用】人工智能技术的发展历程与现状:探讨深度学习在遥感地学中的应用前景
AIGC实战——生成式人工智能总结与展望
近年来,生成模型取得了突破性进展,生成式人工智能拥有了无限可能性和潜在影响,有着无限的实际应用潜力,我们期待着生成式人工智能够产生更广泛的影响。生成模型领域不仅仅是关于创建图像、文本或音乐的应用,而且生成式深度学习隐藏着人工智能的本质。在本节中,将概述生成式人工智能的发展历史,然后探讨生成式人工智能
Macbook配置李沐动手做深度学习环境
Macbook M3pro配置李沐:动手做深度学习
人工智能大模型工作原理(包括数据收集与预处理、大模型训练、大模型部署与应用)
人工智能大模型工作原理(包括数据收集与预处理、大模型训练、大模型部署与应用)

Github上的十大RAG(信息检索增强生成)框架
随着对先进人工智能解决方案需求的不断增长,GitHub上涌现出众多开源RAG框架,每一个都提供了独特的功能和特性。
AI教父荣获2024诺贝尔物理学奖:杰弗里·辛顿和他的深度学习之路!
杰弗里·辛顿(Geoffrey Hinton)凭借在人工神经网络领域的开创性研究,获得了2024年诺贝尔物理学奖,这也使得辛顿成为了全世界首个同时获得图灵奖和诺贝尔奖的科学家。
图像生成(Text-to-Image)发展脉络
图像生成(文生图)发展脉络梳理
GitHub 上高星 AI 开源项目推荐
GitHub 上高星 AI 开源项目推荐
人工智能深度学习系列—深入解析:均方误差损失(MSE Loss)在深度学习中的应用与实践
在深度学习的世界里,损失函数犹如一把尺子,衡量着模型预测与实际结果之间的差距。均方误差损失(Mean Squared Error Loss,简称MSE Loss)作为回归问题中的常见损失函数,以其简单直观的特点,广泛应用于各种预测任务。本文将带您深入了解MSE Loss的背景、计算方法、使用场景以及
AI大模型系列之七:Transformer架构讲解
Transformer模型设计之初,用于解决机器翻译问题,是完全基于注意力机制构建的编码器-解码器架构,编码器和解码器均由若干个具有相同结构的层叠加而成,每一层的参数不同。编码器主要负责将输入序列转化为一个定长的向量表示,解码器则将这个向量解码为输出序列。Transformer总体架构可分为四个部分

深度学习中的学习率调度:循环学习率、SGDR、1cycle 等方法介绍及实践策略研究
深度学习实践者都知道,在训练神经网络时,正确设置学习率是使模型达到良好性能的关键因素之一。学习率通常会在训练过程中根据某种调度策略进行动态调整。调度策略的选择对训练质量也有很大影响。
【鸟类识别系统】Python+卷积神经网络算法+人工智能+深度学习+ResNet50算法+计算机课设项目
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界
补充:理解Query、Key和Value
Query(查询)每个输入元素(如单词、字符等)都有一个Query向量。Query向量表示我们正在寻找的信息或特征。在计算注意力权重时,Query用于匹配Key,从而确定关注哪些元素及其重要程度。Key(键)每个输入元素也有一个Key向量。Key向量表示元素的特征或内容。Key用于与Query匹配,