YOLOv5桌面应用开发(从零开始)

本此博客也是本人的第一篇文章,有写得不好的地方希望大家多多指点!废话不多说直接上干货;本文主要讲解几个部分,(适合一些在读的研究生啥也不会然后接到一些项目无从下手,如果是大佬的话就可以跳过了)(1)yolov5的训练(2)yolov5的界面开发(Pyqt5)(3)将整个项目打包成EXE一.yolov

使用折外预测(oof)评估模型的泛化性能和构建集成模型

折外预测在机器学习中发挥着重要作用,可以提高模型的泛化性能。

Deep Interest Evolution Network(DIEN)专题3:代码解析之模型训练和模型结构

import numpyfrom data_iterator import DataIteratorimport tensorflow as tffrom model import *import timeimport randomimport sysfrom utils import *EMBED

基于BP神经网络使用开盘价、最高价、最低价预测收盘价

以下是本文所用数据~~~一、直接上手撸代码import pandas as pdimport numpy as npimport mathdata = pd.read_excel('上证指数.xls')data = np.array(data.iloc[3:-1,1:])e = 1ita = 0.0

python+opencv实现NCC模板匹配(图像处理)

使用python代码实现NCC匹配1.旋转使用圆投影2.使用降采样加速匹配3.差分简化运算的实现

机器学习分类算法之LightGBM(梯度提升框架)

目录走进LightGBM什么是LightGBM?XGBoost的缺点LightGBM的优化LightGBM的基本原理Histogram 算法直方图加速 LightGBM并行优化代码实践参数详解​ 代码实操最优模型及参数(数据集1000)模型调参每文一语走进LightGBM什么是LightGBM?在上

集成学习中的软投票和硬投票机制详解和代码实现

集成方法是将两个或多个单独的机器学习算法的结果结合在一起,并试图产生比任何单个算法都准确的结果

Matplotlib 3D小红花的绘制原理

本篇博客主要介绍一下3D小红花的绘制原理

python机器学习之流水线

流水线把数据挖掘过程的每个步骤保存在工作流中。在数据挖掘过程中使用流水线,可以大大降低代码及操作的复杂度,优化流程结构,可以有效减少常见问题的发生。流水线通过 Pipeline() 来实例化,需要传入的属性是一连串数据挖掘的步骤,其中前几个是转换器,最后一个必须是估计器。以经典的鸢尾数据为例,通过以

EfficientNetV2 - 通过NAS、Scaling和Fused-MBConv获得更小的模型和更快的训练

EfficientNetV2是由 Google Research,Brain Team发布在2021 ICML的一篇论文,比EfficientNetV1的训练速度快得多,同时体积小 6.8 倍。

5分钟NLP:从 Bag of Words 到 Transformer 的时间年表总结

本文对影响NLP研究的一些重要的模型进行总结,并尽量让它简约而不是简单,如果你刚刚进入NLP领域,本文可以作为深入研究该领域的起点。

数据标准预处理合集_python机器学习sklearn库

文章目录数据获取①归一化 MinMaxScaler1.1默认调用1.2了解相关属性/参数②正则化 Normalizer2.1默认调用2.2相关属性/参数③标准化3.1默认调用3.2相关属性/参数④二值化4.1默认调用4.2相关属性/参数数据获取以鸢尾数据为例,首先加载数据集。from sklearn

深入理解交叉验证与网格搜索——sklearn实现

交叉验证(Cross Validation)和网格搜索(Grid Search)常结合在一起并用来筛选模型的最优参数。本文将从零开始一步步讲解交叉验证和网格搜索的由来,并基于sklearn实现它们。目录一、交叉验证法1.1 交叉验证法的由来1.2 交叉验证法的定义1.3 sklearn.model_

OpenCV-Python实战(19)——OpenCV与深度学习的碰撞

OpenCV 中包含深度神经网络 (deep neural networks, DNN) 模块,可以使用深度神经网络实现前向计算(推理阶段),使用一些流行的深度学习框架进行预训练的网络(例如 Caffe、TensorFlow、Pytorch、Darknet等)就可以轻松用在 OpenCV 项目中了。

【机器学习笔记(一)】——白话入门及术语解释

小白如何快速入门机器学习?如果不做专职的相关岗位开发,自己跑一些学习程序是否可行呢?比较现在各种框架都挺多的了,即使再不济,了解一下具体都能做哪些东西也是很不错的。

特征工程:常用的特征转换方法总结

在数据集中,大多数时候都会有不同大小的数据。为了使更好的预测,必须将不同的特征缩小到相同的幅度范围或某些特定的数据分布。

Anchor free系列网络之YOLOX源码逐行讲解篇(四)--coco数据载入及分布式训练

整个系列包括:Demo源码逐行讲解->train脚本源码逐行讲解->backbone源码逐行讲解->FPN源码逐行讲解->Head源码逐行讲解->loss计算源码逐行讲解->数据加载源码逐行讲解->数据增强源码逐行讲解->simOTA源码逐行讲解。保证

卷积层的算力评估(MACC和FOPS)

以比较简单的lenet网络模型为例,我们尝试推导主要算子的算力计算公式,并看一下它的各层理论算力要求。lenet网络结构以第二层为例,他的输入尺寸是1*28*28*1的一张feature map,卷积核为 5*5*1,stride_h和stride_w均为1, pad_h,pad_w均为0,说明不做

三种梯度下降方法与代码实现

本文属于 线性回归算法【AIoT阶段三】(尚未更新),这里截取自其中一段内容,方便读者理解和根据需求快速阅读。本文通过公式推导+代码两个方面同时进行,因为涉及到代码的编译运行,如果你没有 NumPyNumPy,PandasPandas,MatplotlibMatplotlib 的基础,建议先修文章: