Intel Realsense D455深度相机的标定及使用(二)——对内置IMU和双目相机进行标定

标定前需先安装librealsense SDK2.0以及realsense-ros,可参考教程:Intel Realsense D455深度相机的标定及使用(一)——安装librealsense SDK2.0以及realsense-ros 插入相机并静置, 终端输入realsense-v

Anaconda与python对应版本的对照

Anaconda、Python、pycharm

使用MobileViT替换YOLOv5主干网络

相比较于其他的transformer变体,MobileViT这篇文章给出的改动技巧很简单高效,它解决的ViT中因为像素摊平操作导致的位置信息损失问题,将卷积的局部信息提取优势和自注意力机制的全局信息提取能力结合起来,并且根据论文描述具有高度轻量化+极快的推理速度,具体的大佬们自己去读读,本菜鸡好久之

注意力机制详解系列(二):通道注意力机制

本篇主要介绍注意力机制中的通道注意力机制,对通道注意力机制方法进行详细讲解,通道注意力机制在计算机视觉中,更关注特征图中channel之间的关系,重点对SENet、ECANe进行重点讲解。

如何通过 Python 与 ChatGPT 对话

ChatGPT 是 GPT-3 语言模型的变体,专为会话语言生成而设计。要在 Python 中使用 ChatGPT,您需要安装OpenAI API客户端并获取 API 密钥。当前提你需要知道如何获取一个openAI账号,访问:在本文中,我们将设置一个简单的示例,教您在 Python 程序中使用 Ch

fine-tuning(微调)的理解

介绍fine-tuning的过程就是用训练好的参数(从已训练好的模型中获得)初始化自己的网络,然后用自己的数据接着训练,参数的调整方法与from scratch训练过程一样(梯度下降)。对于初始化过程,我们可以称自己的网络为目标网络,训练好的模型对应网络为源网络,要求目标网络待初始化的层要与源网络的

图像中的注意力机制详解(SEBlock | ECABlock | CBAM)

图像中的注意力机制详解注意力机制目前主要有通道注意力机制和空间注意力机制两种一、 前言我们知道,输入一张图片,神经网络会提取图像特征,每一层都有不同大小的特征图。如图1所示,展示了 VGG网络在提取图像特征时特征图的大小变化。图1 VGG网络特征结构图其中,特征图常见的矩阵形状为[C,H,W]{[C

U2-net网络详解

U2-net网络详解

学习Transformer:自注意力与多头自注意力的原理及实现

自从Transformer[3]模型在NLP领域问世后,基于Transformer的深度学习模型性能逐渐在NLP和CV领域(Vision Transformer)取得了令人惊叹的提升。本文的主要目的是介绍经典Transformer模型和Vision Transformer的技术细节及基本原理,以方便

【动手深度学习-笔记】注意力机制(四)自注意力、交叉注意力和位置编码

像这样的,查询、键和值来自同一组输入的注意力机制,被称为自注意力(self-attention)或者内部注意力(intra-attention)。总而言之,卷积神经网络和自注意力都拥有并行计算的优势,而且自注意力的最大路径长度最短。DETR中,为了保留特征的空间信息,没有将二维数据平铺为一维,而是分

Faster RCNN训练自己的数据集【傻瓜式教程】

Faster RCNN训练自己的数据集【傻瓜式教程】

yolov5网络结构代码解读

yolov5已经很成熟了,作为一个拥有发展系列的检测器,它拥有足够的精度和满足现实中实时性要求,所以许多项目和比赛都能用的上,自己也拿来参加过比赛。YOLOv5针对不同大小的输入和网络深度宽度,主要分成了(n, s, m, l, x)和(n6, s6, m6, l6, x6),这些都在yolov5的

DeepSpeed使用指南(简略版)

Zero Redundancy Optimizer (ZeRO)是DeepSpeed的workhorse. 用户可以提供不同的ZeRO config文件,来实现DeepSpeed的不同功能特性。来看一下官网教程对ZeRO的描述:一句话总结:,划分而不是复制。即,传统的深度学习,模型训练并行,是将模型

【CBAM 解读】混合注意力机制:Convolutional Block Attention Module

本文提出了卷积块注意模块(CBAM),这是一种简单而有效的前馈卷积神经网络注意模块。

Repvgg详解及其实现(pytorch)

原论文中的结构图很直观的展示了repvgg到底是什么意思,对比Resnet它仍然有着类似残差的结构,就是在3*3的卷积基础上弄了一个1*1的分支和一个identity分支(在步长不等于2且输入输出通道相等的情况下),这样除了方便推理过程的融合,似乎还有多分支的好处,因为有丰富的梯度信息(狗头保命),

对Transformer中Add&Norm层的理解

首先我们还是先来回顾一下Transformer的结构:Transformer结构主要分为两大部分,一是Encoder层结构,另一个则是Decoder层结构,Encoder 的输入由 Input Embedding 和 Positional Embedding 求和输入Multi-Head-Atten

YOLOv5 6.0/6.1结合ASFF

YOLO小白纯干货分享!!!YOLOv5 6.0/6.1结合ASFF。本人在多个数据集上做了大量实验,针对不同的数据集效果不同,需要大家进行实验。有效果有提升的情况占大多数。最后,希望能互粉一下,做个朋友,一起学习交流。

2023年3月的10篇论文推荐

本文整理的是本月应该阅读的10篇论文,将包括多模态语言模型、扩散模型、机器翻译等主题。

在Ubuntu20.04系统上LIO-SAM跑KITTI数据集和自己数据集代码修改

LIO-SAM跑KITTI数据集和自己数据集代码修改参考文献参考文献1、ubuntu18运行编译LIO-SAM并用官网和自己的数据建图(修改汇总)2、LIO-SAM运行自己数据包遇到的问题解决–SLAM不学无数术小问题3、使用开源激光SLAM方案LIO-SAM运行KITTI数据集,如有用,请评论雷锋

图像超分辨率重建(pytorch)

本文在原论文的基础上进行了代码补充,并提供了整个流程的代码运行方法以完成图像超分辨率工作。