【图像处理】图像离散小波变换(Discrete Wavelet Transform)及python代码实现

Motivation看到有论文用到了图像的Haar Discrete Wavelet Transform(HDWT),前面也听老师提到过用小波变换做去噪、超分的文章,于是借着这个机会好好学习一下。直观理解参考知乎上的这篇文章:https://zhuanlan.zhihu.com/p/22450818

机器学习算法——混淆矩阵(Confusion Matrix)之鸢尾花实例

什么是混淆矩阵?其实就是把所有类别的预测结果与真实结果按类别放置到了同一个表里,在这个表里我们可以清楚地看到每个类别正确识别的数量和错误识别的数量。混淆矩阵在什么情况下最好呢?答案是类别不平衡时。混淆矩阵是除了ROC曲线和AUC之外的另一个判别分类好坏程度的方法。TP=True Positive=真

深度学习网络各种激活函数 Sigmoid、Tanh、ReLU、Leaky_ReLU、SiLU、Mish

激活函数的目的就是:梯度为0, 无法反向传播,导致参数得不到更新:随着数据的变化,梯度没有明显变化:梯度越来越大,无法收敛梯度消失问题:1、反向传播链路过长,累积后逐渐减小2、数据进入梯度饱和区如何解决:1、选正确激活函数,relu, silu2、BN 归一化数据3、 resnet 较短反向传播路径

全面解析PaDiM

使用PaDiM网络跑自己的数据集,除去测试时读入dataloader的时间,每张图片测试时间在20-30ms,精度比较高,图像分类准确率99-100,像素分割准确率97以上,但是最大的问题是需要通过分割好的label来确定阈值选取(这一点必定要改过来)。for循环内的二次for循环:在tqdm的fo

YOLOv7中的数据集处理【代码分析】

本文章主要是针对yolov7中数据集处理部分代码进行解析(和yolov5是一样的),也是可以更好的理解训练中送入的数据集到底是什么样子的。数据集的处理离不开两个类,(from torch.utils.data.dataloader import DataLoader),不论什么样的算法,在处理数据集

Stable Diffusion 个人推荐的各种模型及设置参数、扩展应用等合集(不断更新中)

stable diffusion 所用的各种模型及参数设置,扩展安装等,陆续更新

Transformer前沿——语义分割

Transformer在语义分割领域的发展

【Anaconda创建虚拟环境】报错及解决办法

Anaconda创建虚拟环境的一些报错问题及解决办法记录

openAI API简易使用教程

openAI提供了几种不同场景的模型,主要有text completion、code completion、chat completion、image completion,例如chat completion,则调用方式为。而且请求的token和回复的token数会被加一起计费,例如说输入了10个t

AI时代来临,如何把握住文档处理及数据分析的机遇

在3月18日,由中国图象图形协会(CSIG)主办,合合信息、CSIG文档图像分析与识别专业委员会联合承办的“CSIG图像图形企业行”活动将正式举办,特邀来自上海交大、厦门大学、复旦、中科大的顶尖学府的学者与合合信息技术团队一道,以直播的形式分享文档处理实践经验及NLP发展趋势,探讨ChatGPT与文

【ROS2&AI】电脑摄像头、intel-D435,利用ros2发布订阅图像(Python)

配置:Python、ROS2、opencv、Ubuntu。利用电脑相机或D435相机联合ROS2进行图像的发布与订阅。与传统的传输列表、字符串msg不同(定义消息类型直接发送即可),利用ros2传输图像需要把图像frame转为image类型的msg。流程如下:opencv或者realsense获取得

【数据挖掘实战】——家用电器用户行为分析及事件识别(BP神经网络)

构建用水事件行为识别模型1、洗浴识别模型根据建模样本数据和用户记录的包含用水的用途、用水开始时间、用水结束时间等属性的用水日志,建立BP神经网络模型识别洗浴事件。

AI上推荐 之 多任务loss优化(自适应权重篇)

1. 写在前面在多任务学习中,往往会将多个相关的任务放在一起来学习。例如在推荐系统中,排序模型同时预估候选的点击率和浏览时间。相对于单任务学习,多任务学习有以下优势:多个任务共享一个模型,占用内存量减少;多个任务一次前向计算得出结果,推理速度增加;关联任务通过共享信息,相互补充,可以提升彼此的表现。

曙光云使用说明

国产GPU平台探索使用

CiteSpace的介绍、重要调整参数及其重要术语

被引次数在我们进行文献分析的时候,被引次数不仅仅指的是每个文献的被引次数,它还指研究作者的被引次数,CiteSpace的一个原理性的解释,是把每个文献或者说每个作者当做是一个节点来看待,它每个节点之间的关联和它每个节点特征,主要的一个参数就是citation,它的被引次数。它这个数值的作用是什么?我

如何使用labelImg标注数据集,最详细的深度学习标签教程

深度学习中,做监督学习时需要标注好的数据集。一种利用现成的数据集:比如mnist手写体、ImageNet、COCO、PASCAL VOC、OpenImage等数据集;还有就是我们可以手动标注的数据集。下面教大家如何使用labelImg库来手动标注Dataset。1、打开anaconda命令行界面,如

一文讲解thop库计算FLOPs问题

计算模型的FLOPs及参数大小FLOPS是处理器性能的衡量指标,是“每秒所执行的浮点运算次数”的缩写。FLOPs是算法复杂度的衡量指标,是“浮点运算次数”的缩写,s代表的是复数。一般使用thop库来计算,GitHub:但官网的Readme中详细写出了是用来计算MACs,而不是FLOPs的MACs(M

损失函数InfoNCE loss和cross entropy loss以及温度系数

唯一的区别是, 在cross entropy loss里, 指代的是数据集里类别的数量, 而在对比学习InfoNCE loss里, 这个k指的是负样本的数量。一般来说,负样本选取的越多,就越接近整个数据集,效果自然会更好。Info NCE loss是NCE的一个简单变体,它认为如果你只把问题看作是