PyTorch 并行训练 DistributedDataParallel完整代码示例
使用大型数据集训练大型深度神经网络 (DNN) 的问题是深度学习领域的主要挑战。在本文中我们将演示使用 PyTorch 的数据并行性和模型并行性。
YOLOv7保姆级教程(个人踩坑无数)----训练自己的数据集
从零开始,保姆级yolov7教程助你脱离新手村。
YOLO v8详解
通过C3代码可以看出,对于cv1卷积和cv2卷积的通道数是一致的,而cv3的输入通道数是前者的2倍,因为cv3的输入是由主梯度流分支(BottleNeck分支)依旧次梯度流分支(CBS,cv2分支)cat得到的,因此是2倍的通道数,而输出则是一样的。C3模块,其主要是借助CSPNet提取分流的思想,
PyTorch+PyG实现图神经网络经典模型目录
本专栏整理了《图神经网络代码实战》,内包含了不同图神经网络的相关代码实现(PyG以及自实现),理论与实践相结合,如GCN、GAT、GraphSAGE等经典图网络,每一个代码实例都附带有完整的代码。
2023年2月的十篇深度学习论文推荐
本月的论文包括语言模型、扩散模型、音乐生成、多模态等主题。
语义分割系列6-Unet++(pytorch实现)
本文介绍了Unet++网络,在pytorch框架上复现Unet++,并在Camvid数据集上进行训练。
机器学习中的数学原理——对数似然函数
通过这一篇博客,带你详细理解最大似然函数!通过博文的推导,我们学习了最大似然函数,这与我们之前接触的最小二乘法不同,最小二乘法以误差作为评判标准,误差越小越好,而最大似然函数以概率作为评判标准,概率越大越好。在计算概率时,我们求了一次对数log计算,避免了连乘概率越来越小,受计算机计算进度影响也越来
yolov5模型训练结果分析
模型训练结束后怎么看训练结果
cpu和gpu已过时,npu和apu的时代开始
🌎CPU是中央处理器。其实就是机器的“大脑”,也是布局谋略、发号施令、控制行动的“总司令官”。CPU的结构主要包括运算器(ALU,ArithmeticandLogicUnit)、控制单元(CU,ControlUnit)、寄存器(Register)、高速缓存器(Cache)和它们之间通讯的数据、控制
对抗生成网络(GAN)中的损失函数
L1损失函数又称为MAE(mean abs error),即平均绝对误差,也就是预测值和真实值之间差值的绝对值。 L2损失函数又称为MSE(mean square error),即平均平方误差,也就是预测值和真实值之间差值的平方。
可视化VIT中的注意力
ViT中最主要的就是注意力机制,所以可视化注意力就成为了解ViT的重要步骤,所以我们这里介绍如何可视化ViT中的注意力
CycleMLP:一种用于密集预测的mlp架构
CycleMLP有两个优点。(1)可以处理各种大小的图像。(2)利用局部窗口实现了计算复杂度与图像大小的线性关系。
一文通俗入门·脉冲神经网络(SNN)·第三代神经网络
一文通俗入门脉冲神经网络(snn)动力学方程,前向传播过程,学习算法,脉冲编码方式
YOLO家族系列模型的演变:从v1到v8(下)
昨天的文章中,我们回顾了 YOLO 家族的前 9 个架构。本文中将继续总结最后3个框架,还有本月最新发布的YOLO V8.
YOLO家族系列模型的演变:从v1到v8(上)
YOLO V8已经在本月发布了,我们这篇文章的目的是对整个YOLO家族进行比较分析。
YOLO V7源码解析
YOLO v7参数与YOLO v5差不多,我就直接将YOLO v5命令行参数搬过来了,偷个懒。
论文推荐:谷歌Masked Generative Transformers 以更高的效率实现文本到图像的 SOTA
在23年1月新发布的论文 Muse中:Masked Generative Transformers 生成文本到图像利用掩码图像建模方法来达到了最先进的性能,零样本 COCO 评估的 FID 分数为 7.88,CLIP 分数为 0.32——同时明显快于扩散或传统自回归模型。
Diffusion 和Stable Diffusion的数学和工作原理详细解释
扩散模型的兴起可以被视为人工智能生成艺术领域最近取得突破的主要因素。而稳定扩散模型的发展使得我们可以通过一个文本提示轻松地创建美妙的艺术插图。所以在本文中,我将解释它们是如何工作的。
【论文导读】 - 关于联邦图神经网络的3篇文章
图神经网络( GNNs )凭借其强大的处理实际应用中广泛存在的图数据的能力,受到了广泛的研究关注。然而,随着社会越来越关注数据隐私,GNNs面临着适应这种新常态的需要。这导致了近年来联邦图神经网络( FedGNNs )研究的快速发展。虽然前景广阔,但这一跨学科领域感兴趣的研究者来说是极具挑战性的。对
为深度学习选择最好的GPU
最后现在4090还是处于耍猴的状态,基本上要抢购或者加价找黄牛但是16384 CUDA + 24GB,对比3090 的10496 CUDA ,真的很香。而4080 16G的9728CUDA 如果价格能到7000内,应该是一个性价比很高的选择。12G的 4080就别考虑了,它配不上这个名字。对于AMD