0


可视化VIT中的注意力

2022年, Vision Transformer (ViT)成为卷积神经网络(cnn)的有力竞争对手,卷积神经网络目前是计算机视觉领域的最先进技术,广泛应用于许多图像识别应用。在计算效率和精度方面,ViT模型超过了目前最先进的(CNN)几乎四倍。

ViT是如何工作的?

ViT模型的性能取决于优化器、网络深度和特定于数据集的超参数等, 标准 ViT stem 采用 16 *16 卷积和 16 步长。

CNN 将原始像素转换为特征图。然后,tokenizer 将特征图转换为一系列令牌,这些令牌随后被送入transformer。然后transformer使用注意力方法生成一系列输出令牌。

projector 最终将输出令牌标记重新连接到特征图。

vision transformer模型的整体架构如下:

  • 将图像拆分为补丁(固定大小)
  • 展平图像块
  • 从这些展平的图像块中创建低维线性嵌入
  • 包括位置嵌入
  • 将序列作为输入发送到transformer编码器
  • 使用图像标签预训练 ViT 模型,然后在广泛的数据集上进行训练
  • 在图像分类的下游数据集进行微调

可视化注意力

ViT中最主要的就是注意力机制,所以可视化注意力就成为了解ViT的重要步骤,所以我们这里介绍如何可视化ViT中的注意力

导入库

 importos
 importtorch
 importnumpyasnp
 importmath
 fromfunctoolsimportpartial
 importtorch
 importtorch.nnasnn
 
 importipywidgetsaswidgets
 importio
 fromPILimportImage
 fromtorchvisionimporttransforms
 importmatplotlib.pyplotasplt
 importnumpyasnp
 fromtorchimportnn
 
 importwarnings
 warnings.filterwarnings("ignore")

创建一个VIT

 deftrunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
     # type: (Tensor, float, float, float, float) -> Tensor
     return_no_grad_trunc_normal_(tensor, mean, std, a, b)
 
 
 def_no_grad_trunc_normal_(tensor, mean, std, a, b):
     # Cut & paste from PyTorch official master until it's in a few official releases - RW
     # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
     defnorm_cdf(x):
         # Computes standard normal cumulative distribution function
         return (1.+math.erf(x/math.sqrt(2.))) /2.
 
 
 defdrop_path(x, drop_prob: float=0., training: bool=False):
     ifdrop_prob==0.ornottraining:
         returnx
     keep_prob=1-drop_prob
     # work with diff dim tensors, not just 2D ConvNets
     shape= (x.shape[0],) + (1,) * (x.ndim-1)
     random_tensor=keep_prob+ \
         torch.rand(shape, dtype=x.dtype, device=x.device)
     random_tensor.floor_()  # binarize
     output=x.div(keep_prob) *random_tensor
     returnoutput
 
 
 classDropPath(nn.Module):
     """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
     """
 
     def__init__(self, drop_prob=None):
         super(DropPath, self).__init__()
         self.drop_prob=drop_prob
 
     defforward(self, x):
         returndrop_path(x, self.drop_prob, self.training)
 
 
 classMlp(nn.Module):
     def__init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
         super().__init__()
         out_features=out_featuresorin_features
         hidden_features=hidden_featuresorin_features
         self.fc1=nn.Linear(in_features, hidden_features)
         self.act=act_layer()
         self.fc2=nn.Linear(hidden_features, out_features)
         self.drop=nn.Dropout(drop)
 
     defforward(self, x):
         x=self.fc1(x)
         x=self.act(x)
         x=self.drop(x)
         x=self.fc2(x)
         x=self.drop(x)
         returnx
 
 
 classAttention(nn.Module):
     def__init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
         super().__init__()
         self.num_heads=num_heads
         head_dim=dim//num_heads
         self.scale=qk_scaleorhead_dim**-0.5
 
         self.qkv=nn.Linear(dim, dim*3, bias=qkv_bias)
         self.attn_drop=nn.Dropout(attn_drop)
         self.proj=nn.Linear(dim, dim)
         self.proj_drop=nn.Dropout(proj_drop)
 
     defforward(self, x):
         B, N, C=x.shape
         qkv=self.qkv(x).reshape(B, N, 3, self.num_heads, C//
                                   self.num_heads).permute(2, 0, 3, 1, 4)
         q, k, v=qkv[0], qkv[1], qkv[2]
 
         attn= ([email protected](-2, -1)) *self.scale
         attn=attn.softmax(dim=-1)
         attn=self.attn_drop(attn)
 
         x= (attn@v).transpose(1, 2).reshape(B, N, C)
         x=self.proj(x)
         x=self.proj_drop(x)
         returnx, attn
 
 
 classBlock(nn.Module):
     def__init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                  drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
         super().__init__()
         self.norm1=norm_layer(dim)
         self.attn=Attention(
             dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
         self.drop_path=DropPath(
             drop_path) ifdrop_path>0.elsenn.Identity()
         self.norm2=norm_layer(dim)
         mlp_hidden_dim=int(dim*mlp_ratio)
         self.mlp=Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
                        act_layer=act_layer, drop=drop)
 
     defforward(self, x, return_attention=False):
         y, attn=self.attn(self.norm1(x))
         ifreturn_attention:
             returnattn
         x=x+self.drop_path(y)
         x=x+self.drop_path(self.mlp(self.norm2(x)))
         returnx
 
 
 classPatchEmbed(nn.Module):
     """ Image to Patch Embedding
     """
 
     def__init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
         super().__init__()
         num_patches= (img_size//patch_size) * (img_size//patch_size)
         self.img_size=img_size
         self.patch_size=patch_size
         self.num_patches=num_patches
 
         self.proj=nn.Conv2d(in_chans, embed_dim,
                               kernel_size=patch_size, stride=patch_size)
 
     defforward(self, x):
         B, C, H, W=x.shape
         x=self.proj(x).flatten(2).transpose(1, 2)
         returnx
 
 
 classVisionTransformer(nn.Module):
     """ Vision Transformer """
 
     def__init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12,
                  num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
                  drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs):
         super().__init__()
         self.num_features=self.embed_dim=embed_dim
 
         self.patch_embed=PatchEmbed(
             img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
         num_patches=self.patch_embed.num_patches
 
         self.cls_token=nn.Parameter(torch.zeros(1, 1, embed_dim))
         self.pos_embed=nn.Parameter(
             torch.zeros(1, num_patches+1, embed_dim))
         self.pos_drop=nn.Dropout(p=drop_rate)
 
         # stochastic depth decay rule
         dpr= [x.item() forxintorch.linspace(0, drop_path_rate, depth)]
         self.blocks=nn.ModuleList([
             Block(
                 dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                 drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
             foriinrange(depth)])
         self.norm=norm_layer(embed_dim)
 
         # Classifier head
         self.head=nn.Linear(
             embed_dim, num_classes) ifnum_classes>0elsenn.Identity()
 
         trunc_normal_(self.pos_embed, std=.02)
         trunc_normal_(self.cls_token, std=.02)
         self.apply(self._init_weights)
 
     def_init_weights(self, m):
         ifisinstance(m, nn.Linear):
             trunc_normal_(m.weight, std=.02)
             ifisinstance(m, nn.Linear) andm.biasisnotNone:
                 nn.init.constant_(m.bias, 0)
         elifisinstance(m, nn.LayerNorm):
             nn.init.constant_(m.bias, 0)
             nn.init.constant_(m.weight, 1.0)
 
     definterpolate_pos_encoding(self, x, w, h):
         npatch=x.shape[1] -1
         N=self.pos_embed.shape[1] -1
         ifnpatch==Nandw==h:
             returnself.pos_embed
         class_pos_embed=self.pos_embed[:, 0]
         patch_pos_embed=self.pos_embed[:, 1:]
         dim=x.shape[-1]
         w0=w//self.patch_embed.patch_size
         h0=h//self.patch_embed.patch_size
         # we add a small number to avoid floating point error in the interpolation
         # see discussion at https://github.com/facebookresearch/dino/issues/8
         w0, h0=w0+0.1, h0+0.1
         patch_pos_embed=nn.functional.interpolate(
             patch_pos_embed.reshape(1, int(math.sqrt(N)), int(
                 math.sqrt(N)), dim).permute(0, 3, 1, 2),
             scale_factor=(w0/math.sqrt(N), h0/math.sqrt(N)),
             mode='bicubic',
         )
         assertint(
             w0) ==patch_pos_embed.shape[-2] andint(h0) ==patch_pos_embed.shape[-1]
         patch_pos_embed=patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
         returntorch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
 
     defprepare_tokens(self, x):
         B, nc, w, h=x.shape
         x=self.patch_embed(x)  # patch linear embedding
 
         # add the [CLS] token to the embed patch tokens
         cls_tokens=self.cls_token.expand(B, -1, -1)
         x=torch.cat((cls_tokens, x), dim=1)
 
         # add positional encoding to each token
         x=x+self.interpolate_pos_encoding(x, w, h)
 
         returnself.pos_drop(x)
 
     defforward(self, x):
         x=self.prepare_tokens(x)
         forblkinself.blocks:
             x=blk(x)
         x=self.norm(x)
         returnx[:, 0]
 
     defget_last_selfattention(self, x):
         x=self.prepare_tokens(x)
         fori, blkinenumerate(self.blocks):
             ifi<len(self.blocks) -1:
                 x=blk(x)
             else:
                 # return attention of the last block
                 returnblk(x, return_attention=True)
 
     defget_intermediate_layers(self, x, n=1):
         x=self.prepare_tokens(x)
         # we return the output tokens from the `n` last blocks
         output= []
         fori, blkinenumerate(self.blocks):
             x=blk(x)
             iflen(self.blocks) -i<=n:
                 output.append(self.norm(x))
         returnoutput
 
 
 classVitGenerator(object):
     def__init__(self, name_model, patch_size, device, evaluate=True, random=False, verbose=False):
         self.name_model=name_model
         self.patch_size=patch_size
         self.evaluate=evaluate
         self.device=device
         self.verbose=verbose
         self.model=self._getModel()
         self._initializeModel()
         ifnotrandom:
             self._loadPretrainedWeights()
 
     def_getModel(self):
         ifself.verbose:
             print(
                 f"[INFO] Initializing {self.name_model} with patch size of {self.patch_size}")
         ifself.name_model=='vit_tiny':
             model=VisionTransformer(patch_size=self.patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4,
                                       qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
 
         elifself.name_model=='vit_small':
             model=VisionTransformer(patch_size=self.patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4,
                                       qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
 
         elifself.name_model=='vit_base':
             model=VisionTransformer(patch_size=self.patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
                                       qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
         else:
             raisef"No model found with {self.name_model}"
 
         returnmodel
 
     def_initializeModel(self):
         ifself.evaluate:
             forpinself.model.parameters():
                 p.requires_grad=False
 
             self.model.eval()
 
         self.model.to(self.device)
 
     def_loadPretrainedWeights(self):
         ifself.verbose:
             print("[INFO] Loading weights")
         url=None
         ifself.name_model=='vit_small'andself.patch_size==16:
             url="dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth"
 
         elifself.name_model=='vit_small'andself.patch_size==8:
             url="dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth"
 
         elifself.name_model=='vit_base'andself.patch_size==16:
             url="dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth"
 
         elifself.name_model=='vit_base'andself.patch_size==8:
             url="dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth"
 
         ifurlisNone:
             print(
                 f"Since no pretrained weights have been found with name {self.name_model} and patch size {self.patch_size}, random weights will be used")
 
         else:
             state_dict=torch.hub.load_state_dict_from_url(
                 url="https://dl.fbaipublicfiles.com/dino/"+url)
             self.model.load_state_dict(state_dict, strict=True)
 
     defget_last_selfattention(self, img):
         returnself.model.get_last_selfattention(img.to(self.device))
 
     def__call__(self, x):
         returnself.model(x)

创建可视化函数

 deftransform(img, img_size):
     img=transforms.Resize(img_size)(img)
     img=transforms.ToTensor()(img)
     returnimg
 
 
 defvisualize_predict(model, img, img_size, patch_size, device):
     img_pre=transform(img, img_size)
     attention=visualize_attention(model, img_pre, patch_size, device)
     plot_attention(img, attention)
 
 
 defvisualize_attention(model, img, patch_size, device):
     # make the image divisible by the patch size
     w, h=img.shape[1] -img.shape[1] %patch_size, img.shape[2] - \
         img.shape[2] %patch_size
     img=img[:, :w, :h].unsqueeze(0)
 
     w_featmap=img.shape[-2] //patch_size
     h_featmap=img.shape[-1] //patch_size
 
     attentions=model.get_last_selfattention(img.to(device))
 
     nh=attentions.shape[1]  # number of head
 
     # keep only the output patch attention
     attentions=attentions[0, :, 0, 1:].reshape(nh, -1)
 
     attentions=attentions.reshape(nh, w_featmap, h_featmap)
     attentions=nn.functional.interpolate(attentions.unsqueeze(
         0), scale_factor=patch_size, mode="nearest")[0].cpu().numpy()
 
     returnattentions
 
 
 defplot_attention(img, attention):
     n_heads=attention.shape[0]
 
     plt.figure(figsize=(10, 10))
     text= ["Original Image", "Head Mean"]
     fori, figinenumerate([img, np.mean(attention, 0)]):
         plt.subplot(1, 2, i+1)
         plt.imshow(fig, cmap='inferno')
         plt.title(text[i])
     plt.show()
 
     plt.figure(figsize=(10, 10))
     foriinrange(n_heads):
         plt.subplot(n_heads//3, 3, i+1)
         plt.imshow(attention[i], cmap='inferno')
         plt.title(f"Head n: {i+1}")
     plt.tight_layout()
     plt.show()
 
 
 
 classLoader(object):
     def__init__(self):
         self.uploader=widgets.FileUpload(accept='image/*', multiple=False)
         self._start()
 
     def_start(self):
         display(self.uploader)
 
     defgetLastImage(self):
         try:
             foruploaded_filenameinself.uploader.value:
                 uploaded_filename=uploaded_filename
             img=Image.open(io.BytesIO(
                 bytes(self.uploader.value[uploaded_filename]['content'])))
 
             returnimg
         except:
             returnNone
 
     defsaveImage(self, path):
         withopen(path, 'wb') asoutput_file:
             foruploaded_filenameinself.uploader.value:
                 content=self.uploader.value[uploaded_filename]['content']
                 output_file.write(content)

对一个图像的注意力进行可视化

 device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
 if device.type == "cuda":
     torch.cuda.set_device(1)
 
 name_model = 'vit_small'
 patch_size = 8
 
 model = VitGenerator(name_model, patch_size, 
                      device, evaluate=True, random=False, verbose=True)
 
 
 # Visualizing Dog Image
 path = '/content/corgi_image.jpg'
 img = Image.open(path)
 factor_reduce = 2
 img_size = tuple(np.array(img.size[::-1]) // factor_reduce) 
 visualize_predict(model, img, img_size, patch_size, device)

本文代码

https://colab.research.google.com/drive/1tRRuT21W3VUvORCFRazrVaFLSWYbYoqL?usp=sharing

作者:Aryan Jadon

“可视化VIT中的注意力”的评论:

还没有评论