0


可视化VIT中的注意力

2022年, Vision Transformer (ViT)成为卷积神经网络(cnn)的有力竞争对手,卷积神经网络目前是计算机视觉领域的最先进技术,广泛应用于许多图像识别应用。在计算效率和精度方面,ViT模型超过了目前最先进的(CNN)几乎四倍。

ViT是如何工作的?

ViT模型的性能取决于优化器、网络深度和特定于数据集的超参数等, 标准 ViT stem 采用 16 *16 卷积和 16 步长。

CNN 将原始像素转换为特征图。然后,tokenizer 将特征图转换为一系列令牌,这些令牌随后被送入transformer。然后transformer使用注意力方法生成一系列输出令牌。

projector 最终将输出令牌标记重新连接到特征图。

vision transformer模型的整体架构如下:

  • 将图像拆分为补丁(固定大小)
  • 展平图像块
  • 从这些展平的图像块中创建低维线性嵌入
  • 包括位置嵌入
  • 将序列作为输入发送到transformer编码器
  • 使用图像标签预训练 ViT 模型,然后在广泛的数据集上进行训练
  • 在图像分类的下游数据集进行微调

可视化注意力

ViT中最主要的就是注意力机制,所以可视化注意力就成为了解ViT的重要步骤,所以我们这里介绍如何可视化ViT中的注意力

导入库

  1. importos
  2. importtorch
  3. importnumpyasnp
  4. importmath
  5. fromfunctoolsimportpartial
  6. importtorch
  7. importtorch.nnasnn
  8. importipywidgetsaswidgets
  9. importio
  10. fromPILimportImage
  11. fromtorchvisionimporttransforms
  12. importmatplotlib.pyplotasplt
  13. importnumpyasnp
  14. fromtorchimportnn
  15. importwarnings
  16. warnings.filterwarnings("ignore")

创建一个VIT

  1. deftrunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
  2. # type: (Tensor, float, float, float, float) -> Tensor
  3. return_no_grad_trunc_normal_(tensor, mean, std, a, b)
  4. def_no_grad_trunc_normal_(tensor, mean, std, a, b):
  5. # Cut & paste from PyTorch official master until it's in a few official releases - RW
  6. # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
  7. defnorm_cdf(x):
  8. # Computes standard normal cumulative distribution function
  9. return (1.+math.erf(x/math.sqrt(2.))) /2.
  10. defdrop_path(x, drop_prob: float=0., training: bool=False):
  11. ifdrop_prob==0.ornottraining:
  12. returnx
  13. keep_prob=1-drop_prob
  14. # work with diff dim tensors, not just 2D ConvNets
  15. shape= (x.shape[0],) + (1,) * (x.ndim-1)
  16. random_tensor=keep_prob+ \
  17. torch.rand(shape, dtype=x.dtype, device=x.device)
  18. random_tensor.floor_() # binarize
  19. output=x.div(keep_prob) *random_tensor
  20. returnoutput
  21. classDropPath(nn.Module):
  22. """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
  23. """
  24. def__init__(self, drop_prob=None):
  25. super(DropPath, self).__init__()
  26. self.drop_prob=drop_prob
  27. defforward(self, x):
  28. returndrop_path(x, self.drop_prob, self.training)
  29. classMlp(nn.Module):
  30. def__init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
  31. super().__init__()
  32. out_features=out_featuresorin_features
  33. hidden_features=hidden_featuresorin_features
  34. self.fc1=nn.Linear(in_features, hidden_features)
  35. self.act=act_layer()
  36. self.fc2=nn.Linear(hidden_features, out_features)
  37. self.drop=nn.Dropout(drop)
  38. defforward(self, x):
  39. x=self.fc1(x)
  40. x=self.act(x)
  41. x=self.drop(x)
  42. x=self.fc2(x)
  43. x=self.drop(x)
  44. returnx
  45. classAttention(nn.Module):
  46. def__init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
  47. super().__init__()
  48. self.num_heads=num_heads
  49. head_dim=dim//num_heads
  50. self.scale=qk_scaleorhead_dim**-0.5
  51. self.qkv=nn.Linear(dim, dim*3, bias=qkv_bias)
  52. self.attn_drop=nn.Dropout(attn_drop)
  53. self.proj=nn.Linear(dim, dim)
  54. self.proj_drop=nn.Dropout(proj_drop)
  55. defforward(self, x):
  56. B, N, C=x.shape
  57. qkv=self.qkv(x).reshape(B, N, 3, self.num_heads, C//
  58. self.num_heads).permute(2, 0, 3, 1, 4)
  59. q, k, v=qkv[0], qkv[1], qkv[2]
  60. attn= (q@k.transpose(-2, -1)) *self.scale
  61. attn=attn.softmax(dim=-1)
  62. attn=self.attn_drop(attn)
  63. x= (attn@v).transpose(1, 2).reshape(B, N, C)
  64. x=self.proj(x)
  65. x=self.proj_drop(x)
  66. returnx, attn
  67. classBlock(nn.Module):
  68. def__init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
  69. drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
  70. super().__init__()
  71. self.norm1=norm_layer(dim)
  72. self.attn=Attention(
  73. dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
  74. self.drop_path=DropPath(
  75. drop_path) ifdrop_path>0.elsenn.Identity()
  76. self.norm2=norm_layer(dim)
  77. mlp_hidden_dim=int(dim*mlp_ratio)
  78. self.mlp=Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
  79. act_layer=act_layer, drop=drop)
  80. defforward(self, x, return_attention=False):
  81. y, attn=self.attn(self.norm1(x))
  82. ifreturn_attention:
  83. returnattn
  84. x=x+self.drop_path(y)
  85. x=x+self.drop_path(self.mlp(self.norm2(x)))
  86. returnx
  87. classPatchEmbed(nn.Module):
  88. """ Image to Patch Embedding
  89. """
  90. def__init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
  91. super().__init__()
  92. num_patches= (img_size//patch_size) * (img_size//patch_size)
  93. self.img_size=img_size
  94. self.patch_size=patch_size
  95. self.num_patches=num_patches
  96. self.proj=nn.Conv2d(in_chans, embed_dim,
  97. kernel_size=patch_size, stride=patch_size)
  98. defforward(self, x):
  99. B, C, H, W=x.shape
  100. x=self.proj(x).flatten(2).transpose(1, 2)
  101. returnx
  102. classVisionTransformer(nn.Module):
  103. """ Vision Transformer """
  104. def__init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12,
  105. num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
  106. drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs):
  107. super().__init__()
  108. self.num_features=self.embed_dim=embed_dim
  109. self.patch_embed=PatchEmbed(
  110. img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
  111. num_patches=self.patch_embed.num_patches
  112. self.cls_token=nn.Parameter(torch.zeros(1, 1, embed_dim))
  113. self.pos_embed=nn.Parameter(
  114. torch.zeros(1, num_patches+1, embed_dim))
  115. self.pos_drop=nn.Dropout(p=drop_rate)
  116. # stochastic depth decay rule
  117. dpr= [x.item() forxintorch.linspace(0, drop_path_rate, depth)]
  118. self.blocks=nn.ModuleList([
  119. Block(
  120. dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
  121. drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
  122. foriinrange(depth)])
  123. self.norm=norm_layer(embed_dim)
  124. # Classifier head
  125. self.head=nn.Linear(
  126. embed_dim, num_classes) ifnum_classes>0elsenn.Identity()
  127. trunc_normal_(self.pos_embed, std=.02)
  128. trunc_normal_(self.cls_token, std=.02)
  129. self.apply(self._init_weights)
  130. def_init_weights(self, m):
  131. ifisinstance(m, nn.Linear):
  132. trunc_normal_(m.weight, std=.02)
  133. ifisinstance(m, nn.Linear) andm.biasisnotNone:
  134. nn.init.constant_(m.bias, 0)
  135. elifisinstance(m, nn.LayerNorm):
  136. nn.init.constant_(m.bias, 0)
  137. nn.init.constant_(m.weight, 1.0)
  138. definterpolate_pos_encoding(self, x, w, h):
  139. npatch=x.shape[1] -1
  140. N=self.pos_embed.shape[1] -1
  141. ifnpatch==Nandw==h:
  142. returnself.pos_embed
  143. class_pos_embed=self.pos_embed[:, 0]
  144. patch_pos_embed=self.pos_embed[:, 1:]
  145. dim=x.shape[-1]
  146. w0=w//self.patch_embed.patch_size
  147. h0=h//self.patch_embed.patch_size
  148. # we add a small number to avoid floating point error in the interpolation
  149. # see discussion at https://github.com/facebookresearch/dino/issues/8
  150. w0, h0=w0+0.1, h0+0.1
  151. patch_pos_embed=nn.functional.interpolate(
  152. patch_pos_embed.reshape(1, int(math.sqrt(N)), int(
  153. math.sqrt(N)), dim).permute(0, 3, 1, 2),
  154. scale_factor=(w0/math.sqrt(N), h0/math.sqrt(N)),
  155. mode='bicubic',
  156. )
  157. assertint(
  158. w0) ==patch_pos_embed.shape[-2] andint(h0) ==patch_pos_embed.shape[-1]
  159. patch_pos_embed=patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
  160. returntorch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
  161. defprepare_tokens(self, x):
  162. B, nc, w, h=x.shape
  163. x=self.patch_embed(x) # patch linear embedding
  164. # add the [CLS] token to the embed patch tokens
  165. cls_tokens=self.cls_token.expand(B, -1, -1)
  166. x=torch.cat((cls_tokens, x), dim=1)
  167. # add positional encoding to each token
  168. x=x+self.interpolate_pos_encoding(x, w, h)
  169. returnself.pos_drop(x)
  170. defforward(self, x):
  171. x=self.prepare_tokens(x)
  172. forblkinself.blocks:
  173. x=blk(x)
  174. x=self.norm(x)
  175. returnx[:, 0]
  176. defget_last_selfattention(self, x):
  177. x=self.prepare_tokens(x)
  178. fori, blkinenumerate(self.blocks):
  179. ifi<len(self.blocks) -1:
  180. x=blk(x)
  181. else:
  182. # return attention of the last block
  183. returnblk(x, return_attention=True)
  184. defget_intermediate_layers(self, x, n=1):
  185. x=self.prepare_tokens(x)
  186. # we return the output tokens from the `n` last blocks
  187. output= []
  188. fori, blkinenumerate(self.blocks):
  189. x=blk(x)
  190. iflen(self.blocks) -i<=n:
  191. output.append(self.norm(x))
  192. returnoutput
  193. classVitGenerator(object):
  194. def__init__(self, name_model, patch_size, device, evaluate=True, random=False, verbose=False):
  195. self.name_model=name_model
  196. self.patch_size=patch_size
  197. self.evaluate=evaluate
  198. self.device=device
  199. self.verbose=verbose
  200. self.model=self._getModel()
  201. self._initializeModel()
  202. ifnotrandom:
  203. self._loadPretrainedWeights()
  204. def_getModel(self):
  205. ifself.verbose:
  206. print(
  207. f"[INFO] Initializing {self.name_model} with patch size of {self.patch_size}")
  208. ifself.name_model=='vit_tiny':
  209. model=VisionTransformer(patch_size=self.patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4,
  210. qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
  211. elifself.name_model=='vit_small':
  212. model=VisionTransformer(patch_size=self.patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4,
  213. qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
  214. elifself.name_model=='vit_base':
  215. model=VisionTransformer(patch_size=self.patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
  216. qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
  217. else:
  218. raisef"No model found with {self.name_model}"
  219. returnmodel
  220. def_initializeModel(self):
  221. ifself.evaluate:
  222. forpinself.model.parameters():
  223. p.requires_grad=False
  224. self.model.eval()
  225. self.model.to(self.device)
  226. def_loadPretrainedWeights(self):
  227. ifself.verbose:
  228. print("[INFO] Loading weights")
  229. url=None
  230. ifself.name_model=='vit_small'andself.patch_size==16:
  231. url="dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth"
  232. elifself.name_model=='vit_small'andself.patch_size==8:
  233. url="dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth"
  234. elifself.name_model=='vit_base'andself.patch_size==16:
  235. url="dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth"
  236. elifself.name_model=='vit_base'andself.patch_size==8:
  237. url="dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth"
  238. ifurlisNone:
  239. print(
  240. f"Since no pretrained weights have been found with name {self.name_model} and patch size {self.patch_size}, random weights will be used")
  241. else:
  242. state_dict=torch.hub.load_state_dict_from_url(
  243. url="https://dl.fbaipublicfiles.com/dino/"+url)
  244. self.model.load_state_dict(state_dict, strict=True)
  245. defget_last_selfattention(self, img):
  246. returnself.model.get_last_selfattention(img.to(self.device))
  247. def__call__(self, x):
  248. returnself.model(x)

创建可视化函数

  1. deftransform(img, img_size):
  2. img=transforms.Resize(img_size)(img)
  3. img=transforms.ToTensor()(img)
  4. returnimg
  5. defvisualize_predict(model, img, img_size, patch_size, device):
  6. img_pre=transform(img, img_size)
  7. attention=visualize_attention(model, img_pre, patch_size, device)
  8. plot_attention(img, attention)
  9. defvisualize_attention(model, img, patch_size, device):
  10. # make the image divisible by the patch size
  11. w, h=img.shape[1] -img.shape[1] %patch_size, img.shape[2] - \
  12. img.shape[2] %patch_size
  13. img=img[:, :w, :h].unsqueeze(0)
  14. w_featmap=img.shape[-2] //patch_size
  15. h_featmap=img.shape[-1] //patch_size
  16. attentions=model.get_last_selfattention(img.to(device))
  17. nh=attentions.shape[1] # number of head
  18. # keep only the output patch attention
  19. attentions=attentions[0, :, 0, 1:].reshape(nh, -1)
  20. attentions=attentions.reshape(nh, w_featmap, h_featmap)
  21. attentions=nn.functional.interpolate(attentions.unsqueeze(
  22. 0), scale_factor=patch_size, mode="nearest")[0].cpu().numpy()
  23. returnattentions
  24. defplot_attention(img, attention):
  25. n_heads=attention.shape[0]
  26. plt.figure(figsize=(10, 10))
  27. text= ["Original Image", "Head Mean"]
  28. fori, figinenumerate([img, np.mean(attention, 0)]):
  29. plt.subplot(1, 2, i+1)
  30. plt.imshow(fig, cmap='inferno')
  31. plt.title(text[i])
  32. plt.show()
  33. plt.figure(figsize=(10, 10))
  34. foriinrange(n_heads):
  35. plt.subplot(n_heads//3, 3, i+1)
  36. plt.imshow(attention[i], cmap='inferno')
  37. plt.title(f"Head n: {i+1}")
  38. plt.tight_layout()
  39. plt.show()
  40. classLoader(object):
  41. def__init__(self):
  42. self.uploader=widgets.FileUpload(accept='image/*', multiple=False)
  43. self._start()
  44. def_start(self):
  45. display(self.uploader)
  46. defgetLastImage(self):
  47. try:
  48. foruploaded_filenameinself.uploader.value:
  49. uploaded_filename=uploaded_filename
  50. img=Image.open(io.BytesIO(
  51. bytes(self.uploader.value[uploaded_filename]['content'])))
  52. returnimg
  53. except:
  54. returnNone
  55. defsaveImage(self, path):
  56. withopen(path, 'wb') asoutput_file:
  57. foruploaded_filenameinself.uploader.value:
  58. content=self.uploader.value[uploaded_filename]['content']
  59. output_file.write(content)

对一个图像的注意力进行可视化

  1. device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
  2. if device.type == "cuda":
  3. torch.cuda.set_device(1)
  4. name_model = 'vit_small'
  5. patch_size = 8
  6. model = VitGenerator(name_model, patch_size,
  7. device, evaluate=True, random=False, verbose=True)
  8. # Visualizing Dog Image
  9. path = '/content/corgi_image.jpg'
  10. img = Image.open(path)
  11. factor_reduce = 2
  12. img_size = tuple(np.array(img.size[::-1]) // factor_reduce)
  13. visualize_predict(model, img, img_size, patch_size, device)

本文代码

https://colab.research.google.com/drive/1tRRuT21W3VUvORCFRazrVaFLSWYbYoqL?usp=sharing

作者:Aryan Jadon

“可视化VIT中的注意力”的评论:

还没有评论