2022年顶会、顶刊SNN相关论文----------持续更新中

2022年顶会、顶刊脉冲神经网络相关优秀论文收集

BERT详解:概念、原理与应用

对bert的原理,结构,预训练过程进行介绍

图像处理中常见的几种插值方法:最近邻插值、双线性插值、双三次插值(附Pytorch测试代码)

在学习可变形卷积时,因为学习到的位移量Δpn可能是小数,因此作者采用双线性插值算法确定卷积操作最终采样的位置。通过插值算法我们可以根据现有已知的数据估计未知位置的数据,并且可以利用这种方法对图像进行缩放、旋转以及几何校正等任务。此处我通过这篇文章学习总结常见的三种插值方法,包括最近邻插值、双线性插值

yolov7训练自己的数据集及报错处理

yolov7训练自己的数据集及报错处理,其实和yolov5差不太多

Pytorch实战100例-第6天:好莱坞明星识别

本文为内部限免文章,参考本文所写记录性文章,请在文章开头注明以下内容,复制粘贴即可。

【Python】CUDA11.6安装PyTorch三件套

安装PyTorch

【毕业设计】深度学习人脸表情识别系统 - python

🔥 Hi,大家好,这里是丹成学长的毕设系列文章!🔥 对毕设有任何疑问都可以问学长哦!这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定要提前准备,避免到后面措手不及,草草了事。为了

改进YOLOv5系列:9.BoTNet Transformer结构的修改

目标检测小白科研Trick改进推荐 | 包括Backbone、Neck、Head、注意力机制、IoU损失函数、NMS、Loss计算方式、自注意力机制、数据增强部分、激活函数

一文通俗入门·脉冲神经网络(SNN)·第三代神经网络

一文通俗入门脉冲神经网络(snn)动力学方程,前向传播过程,学习算法,脉冲编码方式

【ResNet】Pytorch从零构建ResNet18

Pytorch从零构建ResNet18ResNet 目前是应用很广的网络基础框架,所以有必要了解一下.本文从简单的ResNet18开始,详细分析了ResNet18的网络结构,并研究BasicBlock的结构。,使得整个结构非常清晰,再之后手工构建ResNet18网络就没有那么困难了。

NeurIPS2022 | SegNeXt,重新思考卷积注意力设计

在本文中,作者分析了以前成功的分割模型,并找到了它们所拥有的良好特征。基于这些发现,作者提出了一个定制的卷积注意力模块 MSCA 和一个 CNN 风格的网络 SegNeXt。实验结果表明,SegNeXt 在相当大的程度上超越了当前最先进的基于Transformer的方法。最近,基于Transform

Yolov5添加注意力机制

1、先把注意力结构代码放到common.py文件中,以SE举例,将这段代码粘贴到common.py文件中2、找到yolo.py文件里的parse_model函数,将类名加入进去3、修改配置文件(我这里拿yolov5s.yaml举例子),将注意力层加到你想加入的位置;常用的一般是添加到backbone

几种常见的归一化方法

关于归一化的一些理解!!

【YOLO系列】YOLOv5、YOLOX、YOOv6、YOLOv7网络模型结构

YOLOv5、YOLOX、YOLOv6、YOLOv7模型结构图

深度学习常见名词概念:Sota、Benchmark、Baseline、端到端模型、迁移学习等的定义

深度学习:Sota的定义sota实际上就是State of the arts 的缩写,指的是在某一个领域做的Performance最好的model,一般就是指在一些benchmark的数据集上跑分非常高的那些模型。

手把手调参最新 YOLOv7 模型 训练部分 - 最新版本(二)

YOLO科研Trick改进推荐 | 包括Backbone、Neck、Head、注意力机制、IoU损失函数、NMS、Loss计算方式、自注意力机制、数据增强部分、激活函数

计算机与自动化顶会(A类)2023截稿时间及会议时间(持续更新)

计算机顶会2023截稿时间及会议时间(持续更新)

ECA 注意力模块 原理分析与代码实现

本文介绍ECA注意力模块,它是在ECA-Net中提出的,ECA-Net是2020 CVPR中的论文;ECA模块可以被用于CV模型中,能提取模型精度,所以给大家介绍一下它的原理,设计思路,代码实现,如何应用在模型中。它是一种通道注意力模块。

yolov5ds-断点训练、继续训练、先终止训练并调整最终epoch(yolov5同样适用)

训练完原有epoch后,但还继续训练,比如设置epoch为200,已经训练完了,但是没有收敛等原因想使用训练了200epoch的权重继续训练100个epoch,总共就是300个epoch。断电、或者什么原因中断了,比如设定epoch为200,但是在90这里中断了,想从断点这里。这两处修改是为了断点训