TCN(Temporal Convolutional Network,时间卷积网络)

1 前言 实验表明,RNN 在几乎所有的序列问题上都有良好表现,包括语音/文本识别、机器翻译、手写体识别、序列数据分析(预测)等。 在实际应用中,RNN 在内部设计上存在一个严重的问题:由于网络一次只能处理一个时间步长,后一步必须等前一步处理完才能进行运算。这意味着 RNN 不能像 CN

yolov5加入CBAM,SE,CA,ECA注意力机制,纯代码(22.3.1还更新)

CBAM,SE,ECA,CA注意力添加到yolov5网络中,5.0版本

U-Net介绍

Unet 发表于 2015 年,属于 FCN 的一种变体。Unet 的初衷是为了解决生物医学图像的问题,由于效果确实很好后来也被广泛的应用在语义分割的各个方向,如卫星图像分割,工业瑕疵检测等。 Unet 跟 FCN 都是 Encoder-Decoder 结构,结构简单但很有效。 Unet主要可分为

改变conda虚拟环境的默认路径

conda环境默认安装在用户目录C:\Users\username.conda\envs下,如果选择默认路径,那么之后创建虚拟环境,也是安装在用户目录下。不想占用C盘空间,可以修改conda虚拟环境路径。(1)首先,找到用户目录下的.condarc文件(C:\Users\username)。**(2

【深度学习】基于卷积神经网络(tensorflow)的人脸识别项目(四)

实现一个基于界面化的一个人脸识别。本篇主要是实现第四步。最后一篇咯 1. 首先需要收集数据,我的想法是通过OpenCV调用摄像头进行收集人脸照片。 2. 然后进行预处理,主要是对对数据集分类,训练集、验证集、测试集。选取合适的参数,例如损失函数。图像灰度化、归一化等等操作。 3. 开始训练模型,提前

使用CycleGAN训练自己制作的数据集,通俗教程,快速上手

总结了使用**CycleGAN**训练自己制作的数据集,这里的教程例子主要就是官网给出的斑马变马,马变斑马,两个不同域之间的相互转换。教程中提供了官网给的源码包和我自己调试优化好的源码包,大家根据自己的情况下载使用,推荐学习者下载我提供的源码包,可以少走一些弯路,按照我的教程,能较快上手训练使用..

为深度学习选择最好的GPU

加快训练速度,更快的迭代模型

自编码器(Auto-Encoder)

一、自编码器原理自编码器算法属于自监督学习范畴,如果算法把x作为监督信号来学习,这里算法称为自监督学习(Self-supervised Learning)在监督学习中神经网络的功能:。是输入的特征向量长度,是网络输出的向量长度。对于分类问题,网络模型通过把长度为输入特征向量????变换到长度为的输出

Yolov5应用轻量级通用上采样算子CARAFE

手把手教你YOLOv5添加轻量化上采样算子CARAFE

混淆矩阵 (Confusion Matrix)

假设现在有一个分类器A,这个分类器A的作用是告诉一张图片是不是汉堡,那我想知道这个分类器A的效果好不好,应该怎么办呢?最简单的方法是将大量的样本放进到费雷其A当中,让他自己判断这些图片是不是汉堡。经过上面的过程就可以得到一张表格:实际上这张表格是非常庞大的。有成千上万的图片,当他的维度十分大的时候是

【目标检测】YOLOv5遇上知识蒸馏

本文主要来研究知识蒸馏的相关知识,并尝试用知识蒸馏的方法对YOLOv5进行改进。

深度学习——VGG16模型详解

1、网络结构VGG16模型很好的适用于分类和定位任务,其名称来自牛津大学几何组(Visual Geometry Group)的缩写。根据卷积核的大小核卷积层数,VGG共有6种配置,分别为A、A-LRN、B、C、D、E,其中D和E两种是最为常用的VGG16和VGG19。介绍结构图:conv3-64 :

SE注意力机制

SE注意力机制虽然基础,但是非常好用,也是应用最广泛的注意力机制之一,在此记录学习

yolov5模型压缩之模型剪枝

稀疏剪枝

猿创征文|深度学习基于ResNet18网络完成图像分类

CIFAR-10数据集包含了10种不同的类别、共60,000张图像,其中每个类别的图像都是6000张,图像大小均为32×3232×32像素。

Stable Diffusion搭建全过程记录,生成自己的专属艺术照

项目开发领导者有两位,分别是 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser,和慕尼黑大学机器视觉学习组的 Robin Romabach。这个项目的技术基础主要来自于这两位开发者之前在计算机视觉大会 CVPR22 上合作发表的潜伏扩散模型 (Latent Diffusion

Attentional Feature Fusion 注意力特征融合

看到一篇比较不错的特征融合方法,基于注意力机制的 AAF ,与此前的 SENet、SKNet 等很相似,但 AFF性能优于它们,并且适用于更广泛的场景,包括短和长跳连接以及在 Inception层内引起的特征融合。AFF是由南航提出的注意力特征融合,即插即用!

[ 注意力机制 ] 经典网络模型2——CBAM 详解与复现

[ 注意力机制 ] 经典网络模型2——CBAM 详解与复现1、Convolutional Block Attention Module2、CBAM 详解Channel Attention ModuleSpatial Attention Module3、CBAM 复现简称 ``CBAM``,2018年

yolov7 网络架构深度解析

yolov7网络结构深度解析

yolov5-6.0/6.1加入SE、CBAM、CA注意力机制(理论及代码)

yolov5-6.0/6.1加入SE、CBAM、CA注意力机制(理论及代码)