Hugging Face快速入门(重点讲解模型(Transformers)和数据集部分(Datasets))

1. Hugging Face是什么,提供了哪些内容2. Hugging Face模型的使用(Transformer类库)3. Hugging Face数据集的使用(Datasets类库)

torch.nn.Parameter()函数的讲解和使用

torch.nn.Parameter()函数的讲解和使用

CUDA error: device-side assert triggered

原因1:模型大小不匹配在定义模型的最终全连接层时,我没有将 196(斯坦福汽车数据集的类总数)作为输出单元的数量,而是使用了 195。错误通常在您执行反向传播的行中识别。您的损失函数将比较模型的输出和数据集中该观察的标签。万一您对标签和输出感到困惑,请参阅下面我如何定义它们:原因2:损失函数输入错误

深度学习基础宝典---激活函数、Batch Size、归一化

深度学习基础宝典---激活函数、Batch Size、归一化

Anaconda下载及安装(图文)

①官网下载安装包:下载地址:https://www.anaconda.com/products/distribution。

基于kaggle数据集的猫狗识别(超详细版本)

基于kaggle数据集的猫狗识别(超详细版本),包含利用数据增强生成器显示图像、利用数据增强生成器训练卷积神经网络,直接可实现编译的完整代码

深度学习中高斯噪声:为什么以及如何使用

在数学上,高斯噪声是一种通过向输入数据添加均值为零和标准差(σ)的正态分布随机值而产生的噪声。

目标检测算法——YOLOv5/YOLOv7改进之GSConv+Slim Neck(优化成本)

目标检测算法——YOLOv5/YOLOv7改进之GSConv+Slim Neck,作者提出了一种新方法GSConv来减轻模型的复杂度并保持准确性。GSConv可以更好地平衡模型的准确性和速度。并且,提供了一种设计范式Slim Neck,以实现检测器更高的计算成本效益。实验过程中,与原始网络相比,改进

CycleMLP:一种用于密集预测的mlp架构

CycleMLP有两个优点。(1)可以处理各种大小的图像。(2)利用局部窗口实现了计算复杂度与图像大小的线性关系。

免费GPU:九天•毕昇平台使用教程

深度学习非常依赖设备,训练模型就类似在“炼丹”,没有好的炼丹炉,想要复现顶刊中那些动辄8卡/4卡 Tesla V100显卡训练的模型,只能是“望洋兴叹”。那么对于缺乏设备的“穷人”来说,有没有办法去白嫖免费的算力资源呢?经过我的调研,基本有以下三种途径:谷歌的Colab谷歌的Colab可能不少人都用

yoloV5-face学习笔记

yolov5-face是在yolov5的基础上添加了人眼关键点检测。首先放上大佬的开源代码:https://github.com/deepcam-cn/yolov5-face一 代码复现原作者代码的注释非常少,很难直接跑通。1.下载WIDERFace数据集图片上图为https://github.co

浅谈GCN

浅谈GCN

wandb不可缺少的机器学习分析工具

wandb是一款优秀的机器学习模型训练分析跟踪工具,通过它我们可以和简洁的分析出训练过程中指标和参数的变化情况,来更好的帮助我对模型进行调优,通过它还能够使得我们进行协同工作,分析我们的训练结果,帮助更好更方便的复现我们的模型...

一文通俗入门·脉冲神经网络(SNN)·第三代神经网络

一文通俗入门脉冲神经网络(snn)动力学方程,前向传播过程,学习算法,脉冲编码方式

YOLO家族系列模型的演变:从v1到v8(下)

昨天的文章中,我们回顾了 YOLO 家族的前 9 个架构。本文中将继续总结最后3个框架,还有本月最新发布的YOLO V8.

PyTorch环境搭建

​Pytorch是一个以Python优先的深度学习框架,不仅能够实现强大的GPU加速,同时还支持动态神经网络。​ PyTorch既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络。

Windows10系统CUDA和CUDNN安装教程

Windows10系统下安装CUDA和CUDNN保姆级教程

猿创征文|【深度学习前沿应用】文本生成

【自然语言处理(NLP)】文本生成,基于百度飞桨开发,参考于《机器学习实践》所作。

YOLO家族系列模型的演变:从v1到v8(上)

YOLO V8已经在本月发布了,我们这篇文章的目的是对整个YOLO家族进行比较分析。

【机器学习入门项目10例目录】项目详解 + 数据集 + 完整源码

本专栏整理了《机器学习入门项目10例》,内包含了各种不同的入门级机器学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。