注意力机制(SE,ECA,CBAM,SKNet, scSE,Non-Local,GCNet) Pytorch代码

介绍在CNN中的常见的三种注意力机制,并且提供了Pytorch代码2023.3.2新增SKNet代码,同是修改SkNet在测试时不报错,但是在反向传播中报错的情况。2023.3.10 新增scSE注意力代码2023.3.11 新增Non-Local Net代码2023.3.13 新增GCNet代码

Pytorch复习笔记--导出Onnx模型为动态输入和静态输入

当使用 Pytorch 将网络导出为 Onnx 模型格式时,可以导出为动态输入和静态输入两种方式。动态输入即模型输入数据的部分维度是动态的,可以由用户在使用模型时自主设定;静态输入即模型输入数据的维度是静态的,不能够改变,当用户使用模型时只能输入指定维度的数据进行推理。在以下代码中,定义了一个网络,

【Pytorch】torch. matmul()

Hello!ଘ(੭ˊᵕˋ)੭昵称:海轰标签:程序猿|C++选手|学生简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!唯有努力💪本文仅记录自己感兴趣的内容文章仅作为个人学习笔

图注意网络GAT理解及Pytorch代码实现【PyGAT代码详细注释】

对GAT的Pytorch版本PyGAT进行注释,包括Cora数据集的处理和使用!

模型部署入门教程(三):PyTorch 转 ONNX 详解

OpenMMLab:模型部署系列教程(一):模型部署简介OpenMMLab:模型部署系列教程(二):解决模型部署中的难题知道你们在催更,这不,模型部署入门系列教程来啦~在前二期的教程中,我们带领大家成功部署了第一个模型,解决了一些在模型部署中可能会碰到的困难。今天开始,我们将由浅入深地介绍 ONNX

“Ninja is required to load C++ extensions”解决方案

问题描述Ninja is required to load C++ extensions在跑一份代码时,由于该代码中需要调用 torch/utils/cpp_extension.py 文件,而此时又未安装ninja库,所以会出现如下错误:RuntimeError: Ninja is required

Pytorch:手把手教你搭建简单的卷积神经网络(CNN),实现MNIST数据集分类任务

利用pytorch搭建简单卷积神经网络用于分类任务,适合初学者快速上手

pytorch复现U-Net 及常见问题汇总(2021.11.14亲测可行)

目录2021.11.14复现过程:训练过程常见问题整理:之前简单地写了一个pytorch的U-net 复现过程,有很多小伙伴在评论里有很多疑问,抽空又复现了一遍,简单整理了常见的问题。之前写的教程:U-net复现pytorch版本 以及制作自己的数据集并训练_candice5566的博客-CSDN博

yolov4/yolov4-tiny保姆级训练教学

pytorch环境搭建以及训练过程保姆级教程

pytorch多GPU并行的问题

以下是在多GPU并行torch程序的时候出现的问题以及解决方案:1.torch.distributed.elastic.multiprocessiong.erroes.ChildFailedError:此类问题的解决方案:1.查看安装的包是否与要求的一致。2.更改batch的大小。3.查看其中是否有

windows11 pycahrm 安装cuda版本的pytorch教程(cuda+cudnn+pytorch)

Windows11安装cuda+cudann+pytorch教程

RKNN模型部署(2)——环境配置

RKNN支持许多框架训练的模型,但由于本人目前主要使用pytorch框架来训练模型,因此该部署教程是以Pytorch模型部署过程为例进行说明,后面再继续补充ONNX模型部署过程。

语义分割系列11-DAnet(pytorch实现)

本文介绍了DAnet网络,介绍了Position Attention和Channel Attention两个Attention机制的构建方式,在pytorch框架上复现了DAnet网络,在Camvid数据集上进行测试。本文提供了DAnet网络的代码和测试结果。

Anaconda D2L 虚拟环境安装配置

Anaconda配置d2l环境,包安装

Pytorch教程入门系列 10----优化器介绍

优化器用于优化模型的参数。在选择优化器时,需要考虑模型的结构、模型的数据量、模型的目标函数等因素。

Anaconda保姆级安装配置教程(新手必看)

本人深度学习入门小白,创建了一个关于深度学习环境配置的专栏,包括从anaconda到cuda到pytorch的一系列操作,本篇文章为Anaconda的保姆级安装教程,也是环境配置专栏的第一步

Pytorch深度学习实战3-7:详解数据加载DataLoader与模型处理

本文以MNIST手写数据集为例,图文讲解Pytorch中操作数据的核心类Dataset和DataLoader,介绍其基本原理和主要的数据预处理方法

Pytorch 05-进阶训练技巧

PyTorch在torch.nn模块为我们提供了许多常用的损失函数,比如:MSELoss,L1Loss,BCELoss...... 但是随着深度学习的发展,出现了越来越多的非官方提供的Loss,比如DiceLoss,HuberLoss,SobolevLoss...... 这些Loss Functio

基于CNN卷积神经网络实现中文手写汉字识别

中国版的 MNIST 数据集是在纽卡斯尔大学的一个项目框架中收集的数据。一百名中国公民参与了数据收集工作。每个参与者用标准的黑色墨水笔在一张桌子上写下所有 15 个数字,在一张白色 A4 纸上画出了 15 个指定区域。这个过程对每个参与者重复 10 次。每张纸都以 300x300 像素的分辨率扫描。

swin-transformer详解及代码复现

1. swin-transformer网络结构实际上,我们在进行代码复现时应该是下图,接下来我们根据下面的图片进行分段实现2. Patch Partition & Patch Embedding首先将图片输入到Patch Partition模块中进行分块,即每4x4相邻的像素为一个Patch