【Pytorch项目实战】之生成式模型:DeepDream、风格迁移、图像修复
现有一个猫狗分类网络模型,当输入一张云的图像进行判断时,假设这朵云比较像狗,则机器提取的特征也会偏向于狗的特征。假设特征对应的概率分别为:[狗,猫] = [x1,x2] = [0.6,0.4],那么采用L2范数(L2 = x1 ^ 2 + x2 ^ 2)可以很好达到放大特征的效果,最终图像越来越像狗
【代码实践】使用CLIP做一些多模态的事情
CLIP到底有多强,让我们来试试吧!CLIP模型及代码地址:GitHub - openai/CLIP: Contrastive Language-Image Pretraining一、准备环境先创建一个anaconda虚拟环境,包含python=3.7版本,将该环境命名为clip。成功。( pyto
基于yolov5框架实现人流统计(目标检测算法、目标追踪算法以及越界识别功能)+手机获取统计人数
基于yolov5框架实现人流统计(主要AI算法包括:目标检测算法、目标追踪算法以及越界识别功能)+手机获取统计人数(喵提醒)
Pytorch-Lightning中的训练器—Trainer
Pytorch-Lightning中训练器Trainer用法
Anaconda的虚拟环境的包在哪里?(详细教程)
Anaconda
利用pytorch长短期记忆网络LSTM实现股票预测分析
长短时记忆网络(Long Short Term Memory Network, LSTM),是一种改进之后的循环神经网络,可以解决RNN无法处理长距离的依赖的问题,目前比较流行。LSTM主要就是加入了三个门控:第一个开关遗忘门:负责控制继续保存长期状态c;第二个开关输入门:负责控制把即时状态输入到长
Pytorch模型量化
在深度学习中,量化指的是使用更少的bit来存储原本以浮点数存储的tensor,以及使用更少的bit来完成原本以浮点数完成的计算。这么做的好处主要有如下几点:更少的模型体积,接近4倍的减少;可以更快的计算,由于更少的内存访问和更快的int8计算,可以快2~4倍。一个量化后的模型,其部分或者全部的ten
人工智能(Pytorch)搭建LSTM网络实现简单案例
LSTM网络是一种特殊的循环神经网络,它能够学习处理序列中的长期依赖性,而不会受到梯度消失或梯度爆炸的影响。LSTM中的关键组成部分是门控机制,它允许网络选择性地丢弃或保留信息。在训练过程中,LSTM网络通过反向传播算法自动调整门控单元的参数,使其能够更好地适应数据。PyTorch是一个基于Pyth
wandb 安装与使用
wandb(Weights & Biases)是一个类似于tensorboard的在线模型训练可视化工具。1)注册和安装wandb注册wandb到其官网 https://wandb.ai/home 注册安装wandb执行:pip install wandbwandb login这个输入的时候
虚拟环境安装Pytorch详细教程
目录一、创建 PyTorch 虚拟环境1.1 打开 Anaconda 自带的 Anaconda Prompt1.2 打开 Anaconda Prompt 之后,在命令行输入命令1.3 输入命令,进入 pytorch 虚拟环境二、安装Pytorch2.1添加清华镜像源2.2搜索可用版本2.3安装2.4
搭建Pytorch环境
无障碍安装pytorch全解
使用Unit Scaling进行FP16 和 FP8 训练
Unit Scaling 是一种新的低精度机器学习方法,能够在没有损失缩放的情况下训练 FP16 和 FP8 中的语言模型。
Pytorch读取照片的三种方式(包括但不限于)
在后续神经网络的搭建及训练中,我们要确保其中涉及到的图像数据为Tensor,并且Tensor的数据类型为浮点型。在使用opencv读取图像时,需要注意其读取后的图像通道按照BGR的顺序排列而不是RGB。
Pytorch:全连接神经网络-MLP回归
使用全连接神经网络(MLP)解决波士顿房价回归预测问题
保研笔记八——YOLOV5项目复习
学习转载自:睿智的目标检测56——Pytorch搭建YoloV5目标检测平台_Bubbliiiing的博客-CSDN博客_睿智yolo Pytorch 搭建自己的YoloV5目标检测平台(Bubbliiiing 源码详解 训练 预测)-主干网络介绍_哔哩哔哩_bilibili还有一些视频的学习笔记。
关于Pytorch中的train()和eval()(以及no_grad())
这三个函数实际上很常见,先来简单看下使用方法train()是nn.Module的方法,也就是你定义了一个网络model,那么表示将该model设置为训练模式,一般在开始新epoch训练时,我们会首先执行该命令:同train()一样,其用法和含义也一样,eval()是nn.Module的方法,也就是你
LSTM实现多变量输入多步预测(Seq2Seq多步预测)时间序列预测(PyTorch版)
本专栏整理了《深度学习时间序列预测案例》,内包含了各种不同的基于深度学习模型的时间序列预测方法,例如LSTM、GRU、CNN(一维卷积、二维卷积)、LSTM-CNN、BiLSTM、Self-Attention、LSTM-Attention、Transformer等经典模型,包含项目原理以及源码,每一
知识蒸馏算法和代码(Pytorch)笔记分享,一个必须要了解的算法
知识蒸馏算法和代码(Pytorch)笔记分享,一个必须要了解的算法
MMdetection之train.py源码详解
目录一、tools/train.py二、源码详解三、核心函数详解(一)build_detector(mmdet/models/builder.py)(二)build_dataset(mmdet/datasets/builder)(三)train_detector(mmdet/apis/train.p
Yolov5--从模块解析到网络结构修改(添加注意力机制)
文章目录1.模块解析(common.py)01. Focus模块02. CONV模块03.Bottleneck模块:04.C3模块05.SPP模块2.为yolov5添加CBAM注意力机制最近在进行yolov5的二次开发,软件开发完毕后才想着对框架进行一些整理和进一步学习,以下将记录一些我的学习记录。