RKNN模型部署(2)——环境配置

RKNN支持许多框架训练的模型,但由于本人目前主要使用pytorch框架来训练模型,因此该部署教程是以Pytorch模型部署过程为例进行说明,后面再继续补充ONNX模型部署过程。

语义分割系列11-DAnet(pytorch实现)

本文介绍了DAnet网络,介绍了Position Attention和Channel Attention两个Attention机制的构建方式,在pytorch框架上复现了DAnet网络,在Camvid数据集上进行测试。本文提供了DAnet网络的代码和测试结果。

Anaconda D2L 虚拟环境安装配置

Anaconda配置d2l环境,包安装

Pytorch教程入门系列 10----优化器介绍

优化器用于优化模型的参数。在选择优化器时,需要考虑模型的结构、模型的数据量、模型的目标函数等因素。

Anaconda保姆级安装配置教程(新手必看)

本人深度学习入门小白,创建了一个关于深度学习环境配置的专栏,包括从anaconda到cuda到pytorch的一系列操作,本篇文章为Anaconda的保姆级安装教程,也是环境配置专栏的第一步

Pytorch深度学习实战3-7:详解数据加载DataLoader与模型处理

本文以MNIST手写数据集为例,图文讲解Pytorch中操作数据的核心类Dataset和DataLoader,介绍其基本原理和主要的数据预处理方法

Pytorch 05-进阶训练技巧

PyTorch在torch.nn模块为我们提供了许多常用的损失函数,比如:MSELoss,L1Loss,BCELoss...... 但是随着深度学习的发展,出现了越来越多的非官方提供的Loss,比如DiceLoss,HuberLoss,SobolevLoss...... 这些Loss Functio

基于CNN卷积神经网络实现中文手写汉字识别

中国版的 MNIST 数据集是在纽卡斯尔大学的一个项目框架中收集的数据。一百名中国公民参与了数据收集工作。每个参与者用标准的黑色墨水笔在一张桌子上写下所有 15 个数字,在一张白色 A4 纸上画出了 15 个指定区域。这个过程对每个参与者重复 10 次。每张纸都以 300x300 像素的分辨率扫描。

swin-transformer详解及代码复现

1. swin-transformer网络结构实际上,我们在进行代码复现时应该是下图,接下来我们根据下面的图片进行分段实现2. Patch Partition & Patch Embedding首先将图片输入到Patch Partition模块中进行分块,即每4x4相邻的像素为一个Patch

torch.where()用法

本文主要讲述的两种用法,第一种是最常规的,也是官方文档所注明的;第二种就是配合bool型张量的计算以上就是torch.where()的两种用法

睿智的目标检测65——Pytorch搭建DETR目标检测平台

基于Transformer的目标检测一直没弄,补上一下。DETR可以采用多种的主干特征提取网络,论文中用的是Resnet,本文以Resnet50网络为例子来给大家演示一下。将靠前若干层的某一层数据输出直接跳过多层引入到后面数据层的输入部分。意味着后面的特征层的内容会有一部分由其前面的某一层线性贡献。

MediaPipe实现手指关键点检测及追踪,人脸识别及追踪

OpenCV 是一个用于计算机视觉应用程序的库。在 OpenCV 的帮助下,我们可以构建大量实时运行更好的应用程序。主要用于图像和视频处理。可以在此处获取有关 OpenCV 的更多信息 (https://opencv.org/)除了 OpenCV,我们将使用 MediaPipe 库。1.MediaP

Pytorch深度学习实战3-2:什么是张量?Tensor的创建与索引

张量是多维数组结构,在人工智能领域应用广泛。本文介绍Pytorch中的张量格式,以及七种张量创建方法和三种张量索引方法

【PyTorch】加载数据集Dataset与DataLoader

关于PyTorch构建数据集的Dataset与DataLoader的一些记录笔记

【深度强化学习】(4) Actor-Critic 模型解析,附Pytorch完整代码

行动者评论家方法是由行动者和评论家两个部分构成。行动者用于选择动作,评论家评论选择动作的好坏。Critic 是评判网络,当输入为环境状态时,它可以评估当前状态的价值,当输入为环境状态和采取的动作时,它可以评估当前状态下采取该动作的价值。Actor 为策略网络,以当前的状态作为输入,输出为动作的概率分

【PyTorch教程】07-PyTorch如何使用多块GPU训练神经网络模型

在本篇博文中,你将学习到在PyTorch中如何使用多GPU进行并行训练。

深度学习中一些注意力机制的介绍以及pytorch代码实现

因为最近看论文发现同一个模型用了不同的注意力机制计算方法,因此懵了好久,原来注意力机制也是多种多样的,为了以后方便看懂人家的注意力机制,还是要总结总结。

有关optimizer.param_groups用法的示例分析

pytorch 1.11.0作为测试,param_groups用法探索`optimizer.param_groups`: 是一个list,其中的元素为字典;`optimizer.param_groups[0]`:长度为7的字典,包括['**params**', '**lr**', '**betas*

YOLOv8检测和分割训练自己数据集

yolov8的分割训练以及报错:runtimeerror: sizes of tensors must match except in dimension 1. expected size 2 but got size 0 for tensor number 1 in the list.

pytorch中使用TensorBoard进行可视化Loss及特征图

pytorch中使用TensorBoard进行可视化安装导入TensorBoard安装TensorBoardpip install tensorboard导入TensorBoardfrom torch.utils.tensorboard import SummaryWriter实例化TensorBo