AI实战:用Transformer建立数值时间序列预测模型开源代码汇总

Transformer做数值时间序列预测

Anaconda安装github上下载的包或者本地包

一 将github上下载的包,解压后 放入anaconda路径下的site-pakages文件夹下我下载的文件名是nda-tools-master我的路径是F:\anaconda_set\envs\tensorflow2\Lib\site-packages\如果anaconda包含Tensorflo

深度学习和日常代码中遇到的报错汇总及解决方案,持续更新中。。。。

深度学习和日常代码中遇到的报错汇总及解决方案,持续更新中。。。。解决方案也大多参考网上的解决方案,有些有用,有些没有效果,本文章中的问题,也仅是本人遇到的问题

ChatGPT 3 与 ChatGPT 4:比较分析

OpenAI 于 2020 年发布的ChatGPT 3改变了 AI 世界的游戏规则。它在理解和生成类人文本方面表现出了非凡的能力。然而,随着研究的继续,ChatGPT 4的开发是为了解决其局限性并改进其前身的性能。让我们比较一下这些模型的主要区别和增强功能。

Pytorch学习笔记(3):图像的预处理(transforms)

Pytorch学习笔记(3):图像的预处理(transforms)

Python+chatGPT编程5分钟快速上手,强烈推荐!!!

通俗易懂,教你快速掌握chatGPT!

GPT2模型详解

一 背景介绍GPT2模型是OpenAI组织在2018年于GPT模型的基础上发布的新预训练模型,其论文原文为 language_models_are_unsupervised_multitask_learnersGPT2模型的预训练语料库为超过40G的近8000万的网页文本数据,GPT2的预训练语料

conda命令记录、torch、torchvision安装

conda命令记录、torch、torchvision安装

按键精灵免字库本地识别OCR

目前网上仅有类大漠的字库识别和远程调用互联网识别。百度飞桨很早就开源了PaddleOCR,做一个小脚本还使用收费远程项目早应该过时。由于对py不熟悉,推理麻烦,直接使用了捷智开源的基于PaddleOCR的RapidOCR,简单快捷。抓图还是得使用大漠,效率比python的抓图性能好。如果能找到高效抓

BiSeNet - 轻量级实时语义分割

在语义分割领域,由于需要对输入图片进行逐像素的分类,运算量很大。通常,为了减少语义分割所产生的计算量,通常而言有两种方式:减小图片大小和降低模型复杂度。减小图片大小可以最直接地减少运算量,但是图像会丢失掉大量的细节从而影响精度。降低模型复杂度则会导致模型的特征提取能力减弱,从而影响分割精度。所以,如

无监督异常检测(MVTec)

(排名第1)Towards Total Recall in Industrial Anomaly Detection (PatchCore)

【目标检测实战学习】数据增强的几种方法:cutout,mixup,mosaic,rotate,HSV,随机抖动实战

最近在学习数据增强方面的东西,简单做个记录首先需要强调的是,数据增强是目标检测流程中的一个过程,通常是在对数据集完成打标签之后,在划分数据集之前,为了增大数据集的数量,获取更多的特征,采用的一种方式。所以,在实战的过程中,不仅仅要对图像进行操作,还要对已经打好的标签(VOC数据集的xml文件)进行同

双栏Latex模板插入多个图片的各种排布

latex中图片排布问题

papers with code介绍(人工智能方向研究生的必备网站)

paperswithcode介绍(人工智能方向的必备网站)本文将从两个部分介绍:一、正文二、导航 **A、browse State-of-the-Art**B、Datasets****C、Method**D、More**网站首页一、正文2.最上面是四个导航选项。3.正文部分就是最新的研究论文正

yolov5使用知识蒸馏

本文介绍的论文《Distilling Object Detectors with Fine-grained Feature Imitation》即是基于 Fine-grained Feature Imitation 技术的目标检测知识蒸馏方法。该方法将 Fine-grained Feature Im

【GPT-4】GPT-4 相关内容总结

GPT-4没开通Plus的用户还没办法体验到GPT-4 是 OpenAI 最先进的系统,可产生更安全、更有用的响应。我们创建了 GPT-4,这是 OpenAI 努力扩展深度学习的最新里程碑。GPT-4 是一个大型多模态模型(接受图像和文本输入,发出文本输出),虽然在许多现实世界场景中的能力不如人类,

YOLO V5源码详解

首先读取图片以及标签路径,并将标签存入缓存,对单标签情况、特定类别、以及是否保持长方形等情况分别进行处理。如果需要进行mosaic 数据增强,首先找到中心点,将图片分别放置于四个位置,进行裁剪或者拼接以适应,并对labels进行调整。同时,对进行过mosaic数据增强过的图像,再进行copy_pas

一文搞懂ubuntu下colmap的使用方法

基于ubuntu20.04下colmap的两种使用方法,新手向

推荐 4个有趣实用的 ChatGPT 开源应用

这篇文章介绍了基于 ChatGPT 的4个有趣实用的开源应用。这些应用包括一个让你使用ChatGPT时生产力翻倍的快捷指令网站,连接了ChatGPT和计算机视觉基础模型,支持图片的发送和接收,以及一个智能语音对话机器人,可以以语音或文本方式与用户进行对话。此外,还有一个支持翻译、润色和总结三种模式,