NeurIPS2022 | SegNeXt,重新思考卷积注意力设计
在本文中,作者分析了以前成功的分割模型,并找到了它们所拥有的良好特征。基于这些发现,作者提出了一个定制的卷积注意力模块 MSCA 和一个 CNN 风格的网络 SegNeXt。实验结果表明,SegNeXt 在相当大的程度上超越了当前最先进的基于Transformer的方法。最近,基于Transform
最基本的25道深度学习面试问题和答案
在本文中,将整理深度学习面试中最常被问到的25个问题和答案。如果你最近正在参加深度学习相关的面试工作,那么这些问题会对你有所帮助
毕业设计-基于深度学习的医学影像分割
毕业设计-基于深度学习的医学影像分割:医学影像分割是计算机辅助诊断中的一项基础且关键的任务,目的在于从像素级别准确识别出目标器官、组织或病变区域。不同于自然场景下的图像,医学影像往往纹理复杂,同时受限于成像技术和成像设备,医学影像噪声大,边界模糊而不易判断。除此之外,对医学影像进行标注极大依赖于医疗
【Deep-sort多目标跟踪流程及其改进方法的解读】
【Deep-sort多目标跟踪流程及其改进方法的解读】文前白话相关的文章、资源链接流程及其改进方法的梳理一、多目标跟踪的流程二、Sort 与 deepSort 的对比三、DeepSort主要的跟踪流程四、关于DeepSort中部分模块原理的理解1、预测模块2、更新模块3、使用级联匹配算法4、马氏距离
最近几篇较好论文实现代码(附源代码下载)
【代码】最近几篇较好论文实现代码(附源代码下载)
变分模态分解(VMD)原理-附代码
VMDmatlab代码
【滤波专题-第4篇】滤波器滤波效果的评价指标(信噪比SNR、均方误差MSE、波形相似参数NCC)
之前两篇文章讲了滤波算法的两大最基本理论和。本篇将讲一下滤波效果的评价指标与用法。评价指标主要用于对滤波效果的量化评价,在论文里经常会用到。
图片隐写之LSB(Least Significant Bit)原理及其代码实现
图片隐写术这项技术可以将秘密信息嵌入到图片媒介中而不损坏它的载体的质量。第三方既觉察不到秘密信息的存在,也不知道存在秘密信息。因此密钥、数字签名和私密信息都可以在开放的环境(如Internet或者内联网)中安全的传送。简单概括就是信息明明就在眼前,但是你却视而不见。基本的LSB原理很简单,最容易实现
【YOLOv5实战4】基于YOLOv5的交通标志识别系统-模型测试与评估
【YOLOv5实战4】基于YOLOv5的交通标志识别系统-模型测试与评估
【PyTorch教程】07-PyTorch如何使用多块GPU训练神经网络模型
在本篇博文中,你将学习到在PyTorch中如何使用多GPU进行并行训练。
【YOLOv5-6.x】设置可学习权重结合BiFPN(Concat操作)
文章目录前言修改yaml文件(以yolov5s为例)修改common.py修改yolo.py修改train.py1. 向优化器中添加BiFPN的权重参数2. 查看BiFPN_Concat层参数更新情况前言这篇博客【魔改YOLOv5-6.x(中)】:加入ACON激活函数、CBAM和CA注意力机制、加权
DTFT和DFT有何区别?一文为你讲解清楚
很多人在开始学习数字信号处理的时候,对于各种傅里叶变换特别是离散傅里叶变化的概念及作用完全不清楚,IC修真院在网上整理了关于DTFT、DFT的各知识点。下面就来了解一下关于DTFT和DFT的区别吧。
计算机视觉—— 相机标定
目录简介一、相机模型1.坐标系2.坐标系变化3.相机畸变模型二、相机标定原理 三、张正友黑白棋盘格标定2.1.算法思想2.2.求解内参和外参的积2.3.求解内参矩阵2.4.求解外参矩阵2.5.得到相机畸变矫正参数2.6.L-M算法参数优化三、实验3.1 实验要求3.2 实验数据环境3.3 代码3.
TensorFlow安装与配置教程(2022.12)
TensorFlow安装与配置教程(2022.12)
联邦学习攻击与防御综述
联邦学习攻击与防御综述吴建汉1,2,司世景1,王健宗1,肖京11.平安科技(深圳)有限公司,广东深圳5180632.中国科学技术大学,安徽合肥230026摘要:随着机器学习技术的广泛应用,数据安全问题时有发生,人们对数据隐私保护的需求日渐显现,这无疑降低了不同实体间共享数据的可能性,导致数据难以共享
安装Anaconda/Python3.9/Tensorflow
安装Anaconda/Python3.9/Tensorflow· 安装Anaconda官网安装,开梯子Download即可。打开下载好的安装包,按照提示,一路【Next】选择安装路径这里官方并没有推荐自动配置环境变量,自动或手动配置均可。一般是默认勾选下边的选项(我这里刚刚已经装好一次,因此勾选不上
【保姆级】anaconda及jupyter配置(新手友好)
基础的anaconda简介和环境创建教学,anaconda prompt基础指令汇总,pycharm环境设置,jupyter notebook环境设置
STM32机器人控制开发教程No.2 霍尔编码器电机测速以及增量式PID控制(基于HAL库)
本文讲解机器人/小车平稳运行并进行速度调节的秘密!
深度学习中一些注意力机制的介绍以及pytorch代码实现
因为最近看论文发现同一个模型用了不同的注意力机制计算方法,因此懵了好久,原来注意力机制也是多种多样的,为了以后方便看懂人家的注意力机制,还是要总结总结。
Python+OpenCV 计算图像场景的深度图(原理与代码实现)
由于时间原因,通过调用OpenCV中与计算立体图像的深度图相关的函数实现,没有自己造轮子。双目立体匹配一直是双目视觉的研究热点,双目相机拍摄同一场景的左、右两幅视点图像,运用立体匹配匹配算法获取视差图,进而获取深度图,这也正是本次实验的内容。从原理上,如果我们有两张相同场景的图像,我们可以通过直观的