深度学习参数初始化(一)Xavier初始化 含代码
Xavier初始化也称为Glorot初始化,因为发明人为Xavier Glorot。Xavier initialization是 Glorot 等人为了解决随机初始化的问题提出来的另一种初始化方法,他们的思想就是尽可能的让输入和输出服从相同的分布,这样就能够避免后面层的激活函数的输出值趋向于0。..
【愚公系列】华为云系列之ModelArts搭建中文语音识别系统
ModelArts是面向AI开发者的一站式开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。“一站式”是指AI开发的各个环节,包括数据处理、算法开发、模型训练、模型部署都可以在ModelArts
Transformer到底为何这么牛
深度学习自出生以来就不被看好,随着计算机的发展和硬件条件的提升,这种大规模计算的深度学习才重新焕发光芒。但是我们都知道深度学习,甚至是深度强化学习的效率太慢了,人类只需要重复学习几次,甚至几十次就可以学会的东西,深度学习需要成千上万次,不得不感叹深度学习算法的学习真的太慢了。深度学习的学习效率问题是
可视化CNN和特征图
卷积神经网络(cnn)是一种神经网络,通常用于图像分类、目标检测和其他计算机视觉任务。CNN的关键组件之一是特征图,它是通过对图像应用卷积滤波器生成的输入图像的表示。
图像修复(Image Restoration)算法数据集详细介绍
图像修复(Image Restoration)算法数据集详细介绍:人脸数据集【1.Helen Face 2.CelebA (Celebrity Attribute) 3.CelebA-HQ 4.FFHQ(Flickr-Faces-HQ)】场景数据集【1.MS COCO (Common Obje
百度「文心一言」阿里「通义千问」腾讯的AI将会叫什么呢
阿里于昨天2023.4.7下午上线通义千问,与ChatGPT类似,同样是基于语言模型训练的人工智能聊天平台。通义千问的核心功能分为四个大类:撰写短文、职场助理、电影脚本和写封邮件。
毕业设计-基于 MATLAB 的图像边缘检测算法的研究和实现
毕业设计-基于 MATLAB 的图像边缘检测算法的研究和实现:二十世纪五十年代,人们开始提出一些数字图像处理的技术,是通过计算机对图像 所包含的信息进行加工和处理后,使得图像中的信息能够为我们所用。从早期的报纸业, 到 1964 年,在航天领域中,有里程碑作用的“旅行者七号”太空船在太空中拍摄了月
Stable Diffusion安装教程、model导入教程以及精品promt指令
Stable Diffusion安装教程、model导入教程以及精品promt指令
YOLO系列模型改进指南
YOLO主流模型改进大杂烩!!!目前包含yolov5,yolov7,yolov8模型的众多改进方案,效果因数据集和参数而定,仅供参考。
【视觉SLAM14讲】【汇总】
第一讲东西少,就没记录【slam十四讲第二版】【课本例题代码向】【第二讲初识SLAM】【SLAM基础知识】【linux下C++编译】【cmake基础使用】【slam十四讲第二版】【课本例题代码向】【第三~四讲刚体运动、李群和李代数】【eigen3.3.4和pangolin安装,Sophus及fim的
GPU版本PyTorch详细安装教程
注意:30系列的的显卡暂时不支持cuda11以下版本!!!一、安装显卡驱动第一步:右击右下角开始,在设备管理器中查看计算机显卡型号,例如我的显卡是GTX1050:第二步:进入英伟达官网,下载对应显卡驱动:官方驱动 | NVIDIAhttps://www.nvidia.cn/Download/inde
CentOs7 + Stable Diffusion + Novel AI实现AI绘画
把改名后的三个文件放到/stable-diffusion-webui/models/Stable-diffusion目录下,重启Stable Diffusion后左上角选择nai模型。整个内容很大,有52G,只需下载stableckpt目录下的animefull-final-pruned文件夹以及a
【交通数据(1)——加州高速路网PeMS交通数据】
交通数据(1)——加州高速路网PeMS交通数据一、PeMS数据介绍1. 数据简介二、相关数据下载1.引入库2.读入数据一、PeMS数据介绍1. 数据简介 使用PeMS,用户可以对高速公路性能进行统一、全面的评估,基于对高速公路网络当前状态的了解做出运营决策,分析拥堵瓶颈以确定潜在的补救措施,并做出
被称为下一代风口的AIGC到底是什么?
AIGC超级干货,快速了解AI新潮
UNet语义分割实战:使用UNet实现对人物的抠图
摘要在上一篇文章,我总结了一些UNet的基础知识,对UNet不了解的可以看看,文章链接:https://wanghao.blog.csdn.net/article/details/123714994我也整理的UNet的pytorch版本,文章链接:https://blog.csdn.net/hhhh
3D深度相机---结构光
去年的仪器仪表的课有汇报,我还专门为3D深度像机做了个调研,一直用inter realsense的,最近老师让看结构光方案的,正好总结一下。由于基于双目立体视觉的深度相机对环境光照强度比较敏感,且比较依赖图像本身的特征,因此在光照不足、缺乏纹理等情况下很难提取到有效鲁棒的特征,从而导致匹配误差增大甚
关于yolov8一些训练的情况
1、使用yolov8s训练(2000轮,真就一直训到了2000轮,不会象是yolov5一样收敛了就不训了)第一次map50=0.915,第一次训练依旧是2000轮,依旧是训练跑完2000轮了,map=0.91,map相差了0.5个点。(训练结果被我删除了,因为上面那个错误,然后我把run文件夹全部删
DDPG 代码调试问题
DDPG的一些问题整理:包括多维动作ddpg,ddpg取边界值,动作加约束的问题,尤其是添加动作约束后网络参数梯度为None这一块,很少有文章结合DDPG网络具体讲,因此把我的解决过程记录下来
OpenCV实战(17)——FAST特征点检测
Harris 算子根据两个垂直方向上的强度变化率给出了角点(或更一般地说,兴趣点)的数学定义。但使用这种定义需要计算图像导数,计算代价较为高昂,特别是兴趣点检测通常只是更复杂算法的先决步骤。在本中,我们将学习另一个特征点检测算子 FAST (Features from Accelerated Seg
SeAFusion:首个结合高级视觉任务的图像融合框架
在SeAFusion发表之前,关于图像融合的研究一直在魔改网络,设计loss function, 调整学习范式中徘徊,SeAFusion给与了我们新的启发,即联系高级视觉任务来研究图像融合。尽管SeAFusion的方法设计还比较简单,但是这也给了我们更多的优化空间。此外之前感觉大家觉得红外和可见光图