M1 mac安装PyTorch的完整步骤指南

本文将介绍如何在M1机器上本地安装和运行PyTorch。你使用的M1机型(Air、Pro、Mini或iMac)没有区别。

8 个例子帮你快速掌握 Pandas 索引操作

在本文中,让我们回顾一些关于用pandas处理索引的技巧。

PyTorch 实现 GradCAM

在本文中,我们将学习如何在 PyTorch 中绘制 GradCam

CVPR2021: Sparse R-CNN新的目标检测模型

今天我们将讨论由四个机构的研究人员提出的一种方法,他们为我们提供了一种新的方法,称为Sparse ​ R-CNN

2021 年 8 月推荐阅读的四篇深度学习论文

2021 年 8 月推荐阅读的四篇深度学习论文

使用通用的单变量选择特征选择提高Kaggle分数

在这篇文章中,我将讨论我如何使用 sklearn 的 GenericUnivariateSelect 函数来提高我最初获得的分数

用于时间序列分析的 5 个Python 库

本文将讨论五个库,如果您对解决时间序列相关问题感兴趣,它们可能会对您有所帮助

5分钟了解Pandas的透视表

本指南简要介绍了 Pandas 中数据透视表工具的使用。

深度学习的线性代数基础

在这篇文章中,我将尝试对线性代数做一个简单的介绍。

数据科学初学者不要做的三件事

在这篇文章中,我将写3件我认为有抱负的数据科学家应该避免的事情。他们有可能破坏你的动力或减慢你的速度。

使用Dataprep进行自动化的探索性数据分析

创建不同类型的图和图表会消耗大量时间,Dataprep 是一个开源 Python 库,有助于自动化探索性数据分析过程

3 个可以薅羊毛的在线 Jupyter Notebook环境

这里介绍几个在线的 Jupyter Notebook环境,希望对你有所帮助

中心极限定理的解释和关键假设

这篇文章将帮助您更直观地理解 CLT 定理。 它还将帮助您更好地理解它的重要性以及使用时的关键假设。

使用UMAP进行降维和可视化

UMAP是一个开源的Python库,可以帮助可视化降维。

通过短文本生成图像

最近来自微软的 AI 研究人员发表了一篇论文,提出了一种基于短文本生成图像的方法。

贝叶斯公式的最通俗解释

本质上,贝叶斯公式描述了在给定新信息的情况下如何更新我们的模型。

在深度学习中使用Bagging集成模型

集成是一种机器学习概念,使用相同的学习算法训练多个模型。

python中三个不常见但是非常有用的数据科学库

在本文中,我将向您展示一些不太为人所知的但是却非常好用的python库。

这个GAN可以根据手绘图生成真实图像

生成对抗的网络机器学习模型现在可以根据它从现有的一组图像中看到的内容生成新的图像。

计算卷积神经网络参数总数和输出形状

在本文中,将介绍如何计算卷积层中的参数数量。以及如何计算卷积图像的形状。