1、A GPU accelerated Genetic Algorithm for the Construction of Hadamard Matrices
https://arxiv.org/pdf/2208.14961
Andras Balogh, Raven Ruiz
这篇论文使用遗传算法来构建Hadamard矩阵。生成随机矩阵的初始群体是除第一列全部是+1以外,每列中都是平衡数量的+1和-1项。通过实现了多个适应度函数并进行筛选,找到了最有效的适应度函数。交叉过程是通过交换父矩阵种群的列来生成子代矩阵种群。突变过程为在随机列中翻转+1和-1条目对。为了加快计算速度,使用CuPy库在GPU上并行处理数千个矩阵和矩阵操作。
2、Cosmic Inflation and Genetic Algorithms
https://arxiv.org/pdf/2208.13804
Steven Abel, Andrei Constantin, Thomas R. Harvey, Andre Lukas
这是一篇关于粒子物理学和遗传算法结合的论文,我个人的理解是通过遗传算法来构造宇宙膨胀的模型,这里面专业属于很多,所以贴下论文的摘要吧:
Large classes of standard single-field slow-roll inflationary models consistent with the required number of e-folds, the current bounds on the spectral index of scalar perturbations, the tensor-to-scalar ratio, and the scale of inflation can be efficiently constructed using genetic algorithms. The setup is modular and can be easily adapted to include further phenomenological constraints. A semi-comprehensive search for sextic polynomial potentials results in roughly O(300,000) viable models for inflation. The analysis of this dataset reveals a preference for models with a tensor-to-scalar ratio in the range 0.0001 < r < 0.0004. We also consider potentials that involve cosine and exponential terms. In the last part we explore more complex methods of search relying on reinforcement learning and genetic programming. While reinforcement learning proves more difficult to use in this context, the genetic programming approach has the potential to uncover a multitude of viable inflationary models with new functional forms.
3、Genetic algorithms for the resource-constrained project scheduling problem in aircraft heavy maintenance
https://arxiv.org/pdf/2208.07169
Kusol Pimapunsri, Darawan Weeranant, Andreas Riel
由于飞机健康管理(AHM)中的活动是相互关联并且都是大型的操作导致飞机维修停机时间很长,许多航空公司不得对这种大量的时间进行提前的规划。AHM中的调度问题被认为是一个np难问题。使用现有算法可能是耗时的,甚至在有些情况下会产生问题。所以这篇论文提出了用于解决AHM中资源约束项目调度问题(RCPSP)的遗传算法。这项研究的目的是尽量缩短维修计划的完工时间。该算法采用5条启发式调度规则,以活动列表的形式生成初始种群,采用RCPSP最早开始时间(EST)和工作组最早开始时间(WEST)的资源分配方法对适应度值进行评估。
在选择过程中采用了elitist 法和roulette 法。然后通过交叉和突变操作迭代改进活动列表序列。结果表明,该算法在计算时间和资源分配方面优于现有算法
4、Quantum vs classical genetic algorithms: A numerical comparison shows faster convergence
https://arxiv.org/pdf/2207.09251
Rubén Ibarrondo, Giancarlo Gatti, Mikel Sanz
遗传算法是受达尔文进化论启发的启发式优化技术。量子计算是利用量子资源加快信息处理速度的一种新的计算范式。因此,通过引入量子自由度来探索遗传算法性能的潜在提高可能是未来的一个研究方向。按照这一思路,一种模块化量子遗传算法最近被提出来,它将个体编码在独立寄存器中,该寄存器包含可交换的量子子程序[arXiv:2203.15039]。这篇论文对量子遗传算法和经典遗传算法进行了数值比较,有兴趣的可以看看该论文。